Dynamic Via-points and Improved Spatial Generalization for Online Trajectory Generation with Dynamic Movement Primitives

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Antonis Sidiropoulos, Zoe Doulgeri
{"title":"Dynamic Via-points and Improved Spatial Generalization for Online Trajectory Generation with Dynamic Movement Primitives","authors":"Antonis Sidiropoulos, Zoe Doulgeri","doi":"10.1007/s10846-024-02051-0","DOIUrl":null,"url":null,"abstract":"<p>Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can be mainly attributed to their generalization, modulation and robustness properties. However, the spatial generalization of DMP can be problematic in some cases, leading to excessive overscaling and in turn large velocities and accelerations. While other DMP variants have been proposed in the literature to tackle this issue, they can also exhibit excessive overscaling as we show in this work. Moreover, incorporating intermediate points (via-points) for adjusting the DMP trajectory to account for the geometry of objects related to the task, or to avoid or push aside objects that obstruct a specific task, is not addressed by the current DMP literature. In this work we tackle these unresolved so far issues by proposing an improved online spatial generalization, that remedies the shortcomings of the classical DMP generalization, and moreover allows the incorporation of dynamic via-points. This is achieved by designing an online adaptation scheme for the DMP weights which is proved to minimize the distance from the demonstrated acceleration profile to retain the shape of the demonstration, subject to dynamic via-point and initial/final state constraints. Extensive comparative simulations with the classical and other DMP variants are conducted, while experimental results validate the practical usefulness and efficiency of the proposed method.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02051-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can be mainly attributed to their generalization, modulation and robustness properties. However, the spatial generalization of DMP can be problematic in some cases, leading to excessive overscaling and in turn large velocities and accelerations. While other DMP variants have been proposed in the literature to tackle this issue, they can also exhibit excessive overscaling as we show in this work. Moreover, incorporating intermediate points (via-points) for adjusting the DMP trajectory to account for the geometry of objects related to the task, or to avoid or push aside objects that obstruct a specific task, is not addressed by the current DMP literature. In this work we tackle these unresolved so far issues by proposing an improved online spatial generalization, that remedies the shortcomings of the classical DMP generalization, and moreover allows the incorporation of dynamic via-points. This is achieved by designing an online adaptation scheme for the DMP weights which is proved to minimize the distance from the demonstrated acceleration profile to retain the shape of the demonstration, subject to dynamic via-point and initial/final state constraints. Extensive comparative simulations with the classical and other DMP variants are conducted, while experimental results validate the practical usefulness and efficiency of the proposed method.

利用动态运动基元在线生成轨迹的动态通过点和改进的空间概括能力
动态运动基元(Dynamic Movement Primitives,DMP)在各种机器人任务中都取得了显著的适用性和成功,这主要归功于它们的泛化、调制和鲁棒性特性。然而,在某些情况下,DMP 的空间泛化可能会出现问题,导致过度缩放,进而产生较大的速度和加速度。虽然文献中提出了其他 DMP 变体来解决这一问题,但正如我们在本研究中展示的那样,这些变体也会表现出过度缩放。此外,目前的 DMP 文献还没有涉及到结合中间点(过点)来调整 DMP 轨迹,以考虑与任务相关的物体的几何形状,或避开或推开阻碍特定任务的物体。在这项工作中,我们提出了一种改进的在线空间泛化方法,弥补了经典 DMP 泛化方法的不足,并允许纳入动态通过点,从而解决了这些迄今尚未解决的问题。为此,我们为 DMP 权重设计了一个在线适应方案,该方案被证明能最大限度地减小与已演示加速度曲线的距离,从而在动态通过点和初始/最终状态限制条件下保持演示的形状。实验结果验证了所提方法的实用性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信