A game-theoretic implication of the Riemann hypothesis

IF 0.5 4区 经济学 Q4 ECONOMICS
Christian Ewerhart
{"title":"A game-theoretic implication of the Riemann hypothesis","authors":"Christian Ewerhart","doi":"10.1016/j.mathsocsci.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>The Riemann hypothesis (RH) is one of the major unsolved problems in pure mathematics. In the present paper, a parameterized family of non-cooperative games is constructed with the property that, if RH is true, then any game in the family admits a unique Nash equilibrium. We argue that this result is not degenerate. Indeed, neither is the conclusion a tautology, nor is RH used to define the family of games.</p></div>","PeriodicalId":51118,"journal":{"name":"Mathematical Social Sciences","volume":"128 ","pages":"Pages 52-59"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165489624000167/pdfft?md5=f43e23ae61ca2ca71d6971f39fd4c1a4&pid=1-s2.0-S0165489624000167-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Social Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165489624000167","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Riemann hypothesis (RH) is one of the major unsolved problems in pure mathematics. In the present paper, a parameterized family of non-cooperative games is constructed with the property that, if RH is true, then any game in the family admits a unique Nash equilibrium. We argue that this result is not degenerate. Indeed, neither is the conclusion a tautology, nor is RH used to define the family of games.

黎曼假设的博弈论含义
黎曼假说(Riemann Hypothesis,RH)是纯数学中尚未解决的主要问题之一。本文构建了一个参数化的非合作博弈族,其属性是:如果黎曼假说为真,那么族中的任何博弈都有一个唯一的纳什均衡。我们认为这一结果并不退化。事实上,结论既不是同义反复,RH 也不是用来定义博弈族的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Social Sciences
Mathematical Social Sciences 数学-数学跨学科应用
CiteScore
1.30
自引率
0.00%
发文量
55
审稿时长
59 days
期刊介绍: The international, interdisciplinary journal Mathematical Social Sciences publishes original research articles, survey papers, short notes and book reviews. The journal emphasizes the unity of mathematical modelling in economics, psychology, political sciences, sociology and other social sciences. Topics of particular interest include the fundamental aspects of choice, information, and preferences (decision science) and of interaction (game theory and economic theory), the measurement of utility, welfare and inequality, the formal theories of justice and implementation, voting rules, cooperative games, fair division, cost allocation, bargaining, matching, social networks, and evolutionary and other dynamics models. Papers published by the journal are mathematically rigorous but no bounds, from above or from below, limits their technical level. All mathematical techniques may be used. The articles should be self-contained and readable by social scientists trained in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信