Tunable product selectivity on demand: a mechanism-guided Lewis acid co-catalyst for CO2 electroreduction to ethylene glycol†

EES catalysis Pub Date : 2024-01-26 DOI:10.1039/D3EY00237C
Yifei Li, Karin U. D. Calvinho, Mahak Dhiman, Anders B. Laursen, Hengfei Gu, Dominick Santorelli, Zachary Clifford and G. Charles Dismukes
{"title":"Tunable product selectivity on demand: a mechanism-guided Lewis acid co-catalyst for CO2 electroreduction to ethylene glycol†","authors":"Yifei Li, Karin U. D. Calvinho, Mahak Dhiman, Anders B. Laursen, Hengfei Gu, Dominick Santorelli, Zachary Clifford and G. Charles Dismukes","doi":"10.1039/D3EY00237C","DOIUrl":null,"url":null,"abstract":"<p >Bioinspired nickel phosphide electrocatalysts can produce more complex multi-carbon products than natural photosynthetic enzymes but controlling C-product selectivity and suppressing H<small><sub>2</sub></small> evolution remain open challenges. Here, we report a significant shift in the CO<small><sub>2</sub></small>RR product distribution on Ni<small><sub>2</sub></small>P in the presence of boric acid/borate, a soluble Lewis acid/base co-catalyst. Using Ni<small><sub>2</sub></small>P without a co-catalyst, CO<small><sub>2</sub></small> reduction produces a mixture of methyl glyoxal (C<small><sub>3</sub></small>) &gt; 2,3-furnadiol (C<small><sub>4</sub></small>) and formic acid (C<small><sub>1</sub></small>) with 100% Faradaic efficiency for carbon products. Addition of boric acid/borate shifts product selectivity to ethylene glycol (EG) with an 85% CO<small><sub>2</sub></small>-Faradaic efficiency (at 10 mM, 0 V <em>vs.</em> RHE), with the balance being the aforementioned C<small><sub>1</sub></small>, C<small><sub>3</sub></small> and C<small><sub>4</sub></small> products. The mechanism of EG formation is proposed to occur by the co-catalyst activating a reaction between surface *hydride and *glycolaldehyde on Ni<small><sub>2</sub></small>P, while suppressing the aldol C–C coupling reaction that forms the C<small><sub>3</sub></small> and C<small><sub>4</sub></small> products. The formation of an intermediate borate-EG-diester, [(OCH<small><sub>2</sub></small>CHO)<small><sub>2</sub></small>B]<small><sup>−</sup></small>, is detected by <small><sup>11</sup></small>B-NMR, which hydrolyzes to release the EG product. Extended electrolysis of boric acid modifies the surface of Ni<small><sub>2</sub></small>P by forming *BO<small><sub>3</sub></small>–Ni<small><sub>2</sub></small>P, as shown by XPS. CO<small><sub>2</sub></small> electro-reduction on *BO<small><sub>3</sub></small>–Ni<small><sub>2</sub></small>P in the absence of free boric acid produces exclusively ethylene oxide (EO), which slowly hydrolyzes to EG in the bicarbonate electrolyte. The combined Faradaic efficiencies for CO<small><sub>2</sub></small>RR products EO + EG with free boric acid as the co-catalyst and *BO<small><sub>3</sub></small>–Ni<small><sub>2</sub></small>P as the cathode reaches 88% (at 0 V <em>vs</em>. RHE), a record carbon selectivity. This work illustrates the feasibility of using Lewis acid/base co-catalysts to change the established chemical reaction mechanism of an electrocatalyst to form a new, chemically predictable, more valuable product in high yield.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 823-833"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00237c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00237c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired nickel phosphide electrocatalysts can produce more complex multi-carbon products than natural photosynthetic enzymes but controlling C-product selectivity and suppressing H2 evolution remain open challenges. Here, we report a significant shift in the CO2RR product distribution on Ni2P in the presence of boric acid/borate, a soluble Lewis acid/base co-catalyst. Using Ni2P without a co-catalyst, CO2 reduction produces a mixture of methyl glyoxal (C3) > 2,3-furnadiol (C4) and formic acid (C1) with 100% Faradaic efficiency for carbon products. Addition of boric acid/borate shifts product selectivity to ethylene glycol (EG) with an 85% CO2-Faradaic efficiency (at 10 mM, 0 V vs. RHE), with the balance being the aforementioned C1, C3 and C4 products. The mechanism of EG formation is proposed to occur by the co-catalyst activating a reaction between surface *hydride and *glycolaldehyde on Ni2P, while suppressing the aldol C–C coupling reaction that forms the C3 and C4 products. The formation of an intermediate borate-EG-diester, [(OCH2CHO)2B], is detected by 11B-NMR, which hydrolyzes to release the EG product. Extended electrolysis of boric acid modifies the surface of Ni2P by forming *BO3–Ni2P, as shown by XPS. CO2 electro-reduction on *BO3–Ni2P in the absence of free boric acid produces exclusively ethylene oxide (EO), which slowly hydrolyzes to EG in the bicarbonate electrolyte. The combined Faradaic efficiencies for CO2RR products EO + EG with free boric acid as the co-catalyst and *BO3–Ni2P as the cathode reaches 88% (at 0 V vs. RHE), a record carbon selectivity. This work illustrates the feasibility of using Lewis acid/base co-catalysts to change the established chemical reaction mechanism of an electrocatalyst to form a new, chemically predictable, more valuable product in high yield.

Abstract Image

按需调节产品选择性:用于二氧化碳电还原乙二醇的机制引导型路易斯酸助催化剂
与天然光合作用酶相比,生物启发磷化镍电催化剂可以产生更复杂的多碳产物,但控制 C 产物的选择性和抑制 H2 的进化仍然是一个挑战。在此,我们报告了在硼酸/硼酸盐(一种可溶性路易斯酸/碱助催化剂)存在下,Ni2P 上 CO2RR 产物分布的显著变化。在不使用助催化剂的情况下使用 Ni2P,二氧化碳还原会产生乙二醛甲酯(C3)> 2,3-呋喃二醇(C4)和甲酸(C1)的混合物,碳产物的法拉第效率为 100%。加入硼酸/硼酸盐后,产物选择性转向乙二醇(EG),C-法拉第效率为 85%(10 mM,0 V 对 RHE),其余为上述 C1、C3 和 C4 产物。EG 的形成机理是通过助催化剂激活 Ni2P 表面*酸酐和*乙醛之间的反应,同时抑制形成 C3 和 C4 产物的醛醇 C-C 偶联反应。通过 11B-NMR 可以检测到中间硼酸-EG 二酯 [(OCH2CHO)2B]- 的形成,水解后释放出 EG 产物。如 XPS 所示,硼酸的长时间电解会改变 Ni2P 的表面并形成 *BO3-Ni2P。在没有游离硼酸的情况下,*BO3-Ni2P 上的 CO2 电还原只产生环氧乙烷 (EO),EO 在碳酸氢盐电解液中缓慢水解为 EG。以游离硼酸为助催化剂、*BO3-Ni2P 为阴极的二氧化碳还原反应产物 EO+EG 的综合法拉第效率达到 88%(0V 对 RHE 时),创下了碳选择性的记录。这项工作说明了使用路易斯酸/碱助催化剂改变电催化剂既定化学反应机理的可行性,从而形成一种新的、化学上可预测的、更有价值的高产率产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信