A Spatial Sample Selection Model*

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yong Bao, Gucheng Li, Xiaotian Liu
{"title":"A Spatial Sample Selection Model*","authors":"Yong Bao,&nbsp;Gucheng Li,&nbsp;Xiaotian Liu","doi":"10.1111/obes.12599","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a sample selection model with spatial correlation in the selection and outcome variables and studies the maximum likelihood method of estimation. Consistency and asymptotic normality of the maximum likelihood estimator are established by the spatial near-epoch dependent properties of the variables. Monte Carlo simulations show its good finite-sample performance. This model is used to examine the impact of climate change on cereal yields in Southeast Asia and projects that climate change may cause a reduction in cereal yields by <span></span><math>\n <semantics>\n <mrow>\n <mn>7</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$$ 7\\% $$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mn>31</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$$ 31\\% $$</annotation>\n </semantics></math>) in the minimum-change (maximum-change) scenario.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"86 4","pages":"928-950"},"PeriodicalIF":16.4000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12599","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a sample selection model with spatial correlation in the selection and outcome variables and studies the maximum likelihood method of estimation. Consistency and asymptotic normality of the maximum likelihood estimator are established by the spatial near-epoch dependent properties of the variables. Monte Carlo simulations show its good finite-sample performance. This model is used to examine the impact of climate change on cereal yields in Southeast Asia and projects that climate change may cause a reduction in cereal yields by 7 % $$ 7\% $$ ( 31 % $$ 31\% $$ ) in the minimum-change (maximum-change) scenario.

空间样本选择模型*
本文提出了一个选择变量和结果变量具有空间相关性的样本选择模型,并研究了最大似然估计方法。最大似然估计法的一致性和渐近正态性是通过变量的空间近距依赖特性建立起来的。蒙特卡罗模拟显示了其良好的有限样本性能。该模型用于研究气候变化对东南亚谷物产量的影响,预测在最小变化(最大变化)情景下,气候变化可能导致谷物产量减少 7%$$ 7\%$$ (31%$$ 31\%$$ )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信