{"title":"Beyond single paradigms, pipelines, and outcomes: Embracing multiverse analyses in psychophysiology","authors":"Peter E. Clayson","doi":"10.1016/j.ijpsycho.2024.112311","DOIUrl":null,"url":null,"abstract":"<div><p>Psychophysiological research is an inherently complex undertaking due to the nature of the data, and its analysis is characterized by many decision points that shape the final dataset and a study's findings. These decisions create a “multiverse” of possible outcomes, and each decision from study conceptualization to statistical analysis can lead to different results and interpretations. This review describes the concept of multiverse analyses, a methodological approach designed to understand the impact of different decisions on the robustness of a study's findings and interpretation. The emphasis is on transparently showcasing different reasonable approaches for constructing a final dataset and on highlighting the influence of various decision points, from experimental design to data processing and outcome selection. For example, the choice of an experimental task can significantly impact event-related brain potential (ERP) scores or skin conductance responses (SCRs), and different tasks might elicit unique variances in each measure. This review underscores the importance of transparently embracing the flexibility inherent in psychophysiological research and the potential consequences of not understanding the fragility or robustness of experimental findings. By navigating the intricate terrain of the psychophysiological multiverse, this review serves as an introduction, helping researchers to make informed decisions, improve the collective understanding of psychophysiological findings, and push the boundaries of the field.</p></div>","PeriodicalId":54945,"journal":{"name":"International Journal of Psychophysiology","volume":"197 ","pages":"Article 112311"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167876024000151/pdfft?md5=8bdde34fa8f49942e3963b1a35791bf8&pid=1-s2.0-S0167876024000151-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167876024000151","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Psychophysiological research is an inherently complex undertaking due to the nature of the data, and its analysis is characterized by many decision points that shape the final dataset and a study's findings. These decisions create a “multiverse” of possible outcomes, and each decision from study conceptualization to statistical analysis can lead to different results and interpretations. This review describes the concept of multiverse analyses, a methodological approach designed to understand the impact of different decisions on the robustness of a study's findings and interpretation. The emphasis is on transparently showcasing different reasonable approaches for constructing a final dataset and on highlighting the influence of various decision points, from experimental design to data processing and outcome selection. For example, the choice of an experimental task can significantly impact event-related brain potential (ERP) scores or skin conductance responses (SCRs), and different tasks might elicit unique variances in each measure. This review underscores the importance of transparently embracing the flexibility inherent in psychophysiological research and the potential consequences of not understanding the fragility or robustness of experimental findings. By navigating the intricate terrain of the psychophysiological multiverse, this review serves as an introduction, helping researchers to make informed decisions, improve the collective understanding of psychophysiological findings, and push the boundaries of the field.
期刊介绍:
The International Journal of Psychophysiology is the official journal of the International Organization of Psychophysiology, and provides a respected forum for the publication of high quality original contributions on all aspects of psychophysiology. The journal is interdisciplinary and aims to integrate the neurosciences and behavioral sciences. Empirical, theoretical, and review articles are encouraged in the following areas:
• Cerebral psychophysiology: including functional brain mapping and neuroimaging with Event-Related Potentials (ERPs), Positron Emission Tomography (PET), Functional Magnetic Resonance Imaging (fMRI) and Electroencephalographic studies.
• Autonomic functions: including bilateral electrodermal activity, pupillometry and blood volume changes.
• Cardiovascular Psychophysiology:including studies of blood pressure, cardiac functioning and respiration.
• Somatic psychophysiology: including muscle activity, eye movements and eye blinks.