Efficient in Vivo Neural Signal Compression Using an Autoencoder-Based Neural Network

Daniel Valencia;Patrick P. Mercier;Amir Alimohammad
{"title":"Efficient in Vivo Neural Signal Compression Using an Autoencoder-Based Neural Network","authors":"Daniel Valencia;Patrick P. Mercier;Amir Alimohammad","doi":"10.1109/TBCAS.2024.3359994","DOIUrl":null,"url":null,"abstract":"Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) applications utilizing continuous local field potentials (LFPs) for cognitive decoding, the volume of neural data to be transmitted to a computer imposes relatively high data rate requirements. This is particularly true for BCIs employing high-density intracortical recordings with hundreds or thousands of electrodes. This article introduces the first autoencoder-based compression digital circuit for the efficient transmission of LFP neural signals. Various algorithmic and architectural-level optimizations are implemented to significantly reduce the computational complexity and memory requirements of the designed in vivo compression circuit. This circuit employs an autoencoder-based neural network, providing a robust signal reconstruction. The application-specific integrated circuit (ASIC) of the in vivo compression logic occupies the smallest silicon area and consumes the lowest power among the reported state-of-the-art compression ASICs. Additionally, it offers a higher compression rate and a superior signal-to-noise and distortion ratio.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10416339/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) applications utilizing continuous local field potentials (LFPs) for cognitive decoding, the volume of neural data to be transmitted to a computer imposes relatively high data rate requirements. This is particularly true for BCIs employing high-density intracortical recordings with hundreds or thousands of electrodes. This article introduces the first autoencoder-based compression digital circuit for the efficient transmission of LFP neural signals. Various algorithmic and architectural-level optimizations are implemented to significantly reduce the computational complexity and memory requirements of the designed in vivo compression circuit. This circuit employs an autoencoder-based neural network, providing a robust signal reconstruction. The application-specific integrated circuit (ASIC) of the in vivo compression logic occupies the smallest silicon area and consumes the lowest power among the reported state-of-the-art compression ASICs. Additionally, it offers a higher compression rate and a superior signal-to-noise and distortion ratio.
使用基于自动编码器的神经网络高效压缩体内神经信号
传统的体内神经信号处理包括从神经元群记录的信号中提取尖峰活动,并在适当的时间间隔内只传输尖峰计数。然而,对于利用连续局部场电位(LFP)进行认知解码的脑机接口(BCI)应用来说,要传输给计算机的神经数据量要求相对较高的数据传输速率。这对于采用数百或数千个电极的高密度皮层内记录的 BCI 尤为如此。本文介绍了首个基于自动编码器的压缩数字电路,用于高效传输 LFP 神经信号。通过各种算法和架构层面的优化,大大降低了所设计的体内压缩电路的计算复杂度和内存要求。该电路采用基于自动编码器的神经网络,可提供稳健的信号重建。在已报道的最先进的压缩专用集成电路中,体内压缩逻辑的专用集成电路(ASIC)所占硅片面积最小,功耗最低。此外,它还能提供更高的压缩率以及出色的信噪比和失真比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信