{"title":"Genome-Wide Meta-Analysis Identifies 11 Susceptibility Variants of Vitiligo in the Chinese Han Population","authors":"","doi":"10.1016/j.jid.2024.01.010","DOIUrl":null,"url":null,"abstract":"<div><p>Vitiligo is an autoimmune disease involving loss of melanocytes. Although several genetic studies have confirmed that genetic factors play an important role, its pathogenesis remains incompletely characterized. In this study, a genome-wide meta-analysis was conducted to search for more susceptibility variants of vitiligo. Tang et al performed a GWAS for cohort I (1117 vitiligo cases and 1701 healthy controls) previously, and we conducted a GWAS for cohort II (3323 vitiligo cases and 7186 healthy controls) in this study, with the results subjected to a genome-wide meta-analysis and linkage disequilibrium analysis. We identify, to our knowledge, 11 previously unreported susceptibility variants, of which 6 variants are located in the intronic regions, and the remaining 5 variants are located within intergenic regions between genes. In addition, the results of polygenic risk score show that the best evaluated effect for target data is among significant SNVs of the base data. The susceptibility genes of vitiligo are mainly enriched in the immune-related functions and pathways. The susceptibility variants expand the role of genetic factors associated with vitiligo. The bioinformatics analysis for risk genes provides further insight into the pathogenesis of vitiligo.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022202X24000812/pdfft?md5=fbae06ce04a89dc41e6da7d932aa8e95&pid=1-s2.0-S0022202X24000812-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022202X24000812","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vitiligo is an autoimmune disease involving loss of melanocytes. Although several genetic studies have confirmed that genetic factors play an important role, its pathogenesis remains incompletely characterized. In this study, a genome-wide meta-analysis was conducted to search for more susceptibility variants of vitiligo. Tang et al performed a GWAS for cohort I (1117 vitiligo cases and 1701 healthy controls) previously, and we conducted a GWAS for cohort II (3323 vitiligo cases and 7186 healthy controls) in this study, with the results subjected to a genome-wide meta-analysis and linkage disequilibrium analysis. We identify, to our knowledge, 11 previously unreported susceptibility variants, of which 6 variants are located in the intronic regions, and the remaining 5 variants are located within intergenic regions between genes. In addition, the results of polygenic risk score show that the best evaluated effect for target data is among significant SNVs of the base data. The susceptibility genes of vitiligo are mainly enriched in the immune-related functions and pathways. The susceptibility variants expand the role of genetic factors associated with vitiligo. The bioinformatics analysis for risk genes provides further insight into the pathogenesis of vitiligo.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.