{"title":"Effects of Home Cage Tunnels on Within-cage Behaviors of Mice with Cranial Implants.","authors":"Marissa G Castronovo, Daniel W Wesson","doi":"10.30802/AALAS-JAALAS-22-000087","DOIUrl":null,"url":null,"abstract":"<p><p>Keeping tunnels in the home cages of mice used in research appears to both reduce handling-related stress and provide environmental enrichment. However, for mice that have surgical implants that extend beyond their body, having tunnels in the home cages could engender concerns for their welfare, including the possibility of them becoming stuck in the tunnel. The goal of this study was to determine how mice with different sizes of cranial implants interacted with a tunnel in their home cage. We used male and female mice with a C57BL/6J background in this study. The mice underwent a either a craniotomy in which they received either no implant (sham), an indwelling cannula used for drug delivery, or a ferrule-type implant. The number of mouse interactions with tunnels was recorded over a 30-min period while the mouse was in its home cage with its tunnel. We found that sham mice interacted significantly more with the tunnels than did mice with either cannulae or ferrule implants. On average sham mice interacted more with the tunnel by walking through or over it whereas mice with either type of implant rarely even touched the tunnel with their heads. Our results indicate that mice with implants do not enter in the tunnels, and thus the tunnel reduces accessible cage-space rather than providing enrichment benefits. These results raise the question of whether tunnels should be routinely available for mice with cranial implants.</p>","PeriodicalId":94111,"journal":{"name":"Journal of the American Association for Laboratory Animal Science : JAALAS","volume":" ","pages":"154-159"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Association for Laboratory Animal Science : JAALAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30802/AALAS-JAALAS-22-000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Keeping tunnels in the home cages of mice used in research appears to both reduce handling-related stress and provide environmental enrichment. However, for mice that have surgical implants that extend beyond their body, having tunnels in the home cages could engender concerns for their welfare, including the possibility of them becoming stuck in the tunnel. The goal of this study was to determine how mice with different sizes of cranial implants interacted with a tunnel in their home cage. We used male and female mice with a C57BL/6J background in this study. The mice underwent a either a craniotomy in which they received either no implant (sham), an indwelling cannula used for drug delivery, or a ferrule-type implant. The number of mouse interactions with tunnels was recorded over a 30-min period while the mouse was in its home cage with its tunnel. We found that sham mice interacted significantly more with the tunnels than did mice with either cannulae or ferrule implants. On average sham mice interacted more with the tunnel by walking through or over it whereas mice with either type of implant rarely even touched the tunnel with their heads. Our results indicate that mice with implants do not enter in the tunnels, and thus the tunnel reduces accessible cage-space rather than providing enrichment benefits. These results raise the question of whether tunnels should be routinely available for mice with cranial implants.