Sabiha Gul, Raffaella Gallo, Lorenzo Bertolino, Fabian Patauner, Salvatore Buono, Rosanna De Rosa, Clelia Esposito, Nicola Galdieri, Arta Karruli, Domenico Iossa, Eugenio Piscitelli, Roberto Andini, Antonio Corcione, Emanuele Durante-Mangoni
{"title":"Pharmacokinetic parameters of CAZ-AVI in the normal lung and in models of pneumonia: lessons for treatment optimization in critical care.","authors":"Sabiha Gul, Raffaella Gallo, Lorenzo Bertolino, Fabian Patauner, Salvatore Buono, Rosanna De Rosa, Clelia Esposito, Nicola Galdieri, Arta Karruli, Domenico Iossa, Eugenio Piscitelli, Roberto Andini, Antonio Corcione, Emanuele Durante-Mangoni","doi":"10.1080/1120009X.2024.2308977","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of multidrug-resistant Gram-negative bacterial infections is a significant issue for worldwide public health. Gram-negative organisms regularly develop resistance to antibiotics, especially to β-lactam antimicrobials, which can drastically restrict the number of therapies. A third-generation cephalosporin and the non-β-lactam β-lactamase inhibitor avibactam, which exhibits broad-spectrum β-lactamase inhibition <i>in vitro</i>, are combined to form ceftazidime-avibactam (CAZ-AVI). In this narrative review, we summarize data on pharmacokinetic (PK) parameters for CAZ-AVI in both animal and human models of pneumonia, as well as in healthy individuals. We assessed current literature performing an extensive search of the literature, using as search words 'CAZ-AVI', 'pharmacokinetics', 'pneumonia', 'lung', and 'epithelial lining fluid'. Overall, lung exposure studies of CAZ-AVI revealed that the epithelial lining fluid penetration ranges between 30% and 35% of plasma concentration. Despite the fair lung penetration of CAZ-AVI, this antimicrobial agent has a pivotal role in managing patients with multi-drug resistant Gram-negative pneumonia, however further studies are needed to better assess its PK profile.</p>","PeriodicalId":15338,"journal":{"name":"Journal of Chemotherapy","volume":" ","pages":"465-473"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1120009X.2024.2308977","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
The spread of multidrug-resistant Gram-negative bacterial infections is a significant issue for worldwide public health. Gram-negative organisms regularly develop resistance to antibiotics, especially to β-lactam antimicrobials, which can drastically restrict the number of therapies. A third-generation cephalosporin and the non-β-lactam β-lactamase inhibitor avibactam, which exhibits broad-spectrum β-lactamase inhibition in vitro, are combined to form ceftazidime-avibactam (CAZ-AVI). In this narrative review, we summarize data on pharmacokinetic (PK) parameters for CAZ-AVI in both animal and human models of pneumonia, as well as in healthy individuals. We assessed current literature performing an extensive search of the literature, using as search words 'CAZ-AVI', 'pharmacokinetics', 'pneumonia', 'lung', and 'epithelial lining fluid'. Overall, lung exposure studies of CAZ-AVI revealed that the epithelial lining fluid penetration ranges between 30% and 35% of plasma concentration. Despite the fair lung penetration of CAZ-AVI, this antimicrobial agent has a pivotal role in managing patients with multi-drug resistant Gram-negative pneumonia, however further studies are needed to better assess its PK profile.
期刊介绍:
The Journal of Chemotherapy is an international multidisciplinary journal committed to the rapid publication of high quality, peer-reviewed, original research on all aspects of antimicrobial and antitumor chemotherapy.
The Journal publishes original experimental and clinical research articles, state-of-the-art reviews, brief communications and letters on all aspects of chemotherapy, providing coverage of the pathogenesis, diagnosis, treatment, and control of infection, as well as the use of anticancer and immunomodulating drugs.
Specific areas of focus include, but are not limited to:
· Antibacterial, antiviral, antifungal, antiparasitic, and antiprotozoal agents;
· Anticancer classical and targeted chemotherapeutic agents, biological agents, hormonal drugs, immunomodulatory drugs, cell therapy and gene therapy;
· Pharmacokinetic and pharmacodynamic properties of antimicrobial and anticancer agents;
· The efficacy, safety and toxicology profiles of antimicrobial and anticancer drugs;
· Drug interactions in single or combined applications;
· Drug resistance to antimicrobial and anticancer drugs;
· Research and development of novel antimicrobial and anticancer drugs, including preclinical, translational and clinical research;
· Biomarkers of sensitivity and/or resistance for antimicrobial and anticancer drugs;
· Pharmacogenetics and pharmacogenomics;
· Precision medicine in infectious disease therapy and in cancer therapy;
· Pharmacoeconomics of antimicrobial and anticancer therapies and the implications to patients, health services, and the pharmaceutical industry.