{"title":"Algorithmic assessment reveals functional implications of GABRD gene variants linked to idiopathic generalized epilepsy.","authors":"Ayla Arslan","doi":"10.1080/00207454.2024.2312987","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The primary objective of this study is to address the challenge posed by the increasing number of variants of unknown clinical significance (VUS) within the GABRD gene, which encodes the δ subunit of γ-Aminobutyric acid type A receptors. The focus is on predicting the most pathogenic GABRD VUS to enhance precision medicine and improve our understanding of relevant pathophysiology.</p><p><strong>Methods: </strong>The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. Initially, separate algorithms based on sequence homology are utilized to assess this variant set. Subsequently, consensus variants predicted as pathogenic undergo further evaluation through a web server employing an algorithm based on structural homology. The resulting 11 variants are then validated using in silico tools that assess variant effects based on genetic and molecular data. The evaluation includes consideration of disease association and protein stability due to amino acid substitutions.</p><p><strong>Results: </strong>The study identifies specific variants (L111R, R114C, D123N, G150S, and L243P) in the coding region of the GABRD gene, which are predicted as deleterious by multiple algorithms. These variants are evolutionarily conserved, mapped onto the extracellular domain of the δ subunit, and associated with idiopathic generalized epilepsy.</p><p><strong>Conclusions: </strong>The findings suggest structural or functional consequences that lead to pathogenicity, offering valuable insights for wet-lab experimentation. Besides, the findings contribute to the validation of clinically significant genetic variants in the GABRD gene, which is critical for epilepsy precision medicine.</p>","PeriodicalId":14161,"journal":{"name":"International Journal of Neuroscience","volume":" ","pages":"533-543"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00207454.2024.2312987","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The primary objective of this study is to address the challenge posed by the increasing number of variants of unknown clinical significance (VUS) within the GABRD gene, which encodes the δ subunit of γ-Aminobutyric acid type A receptors. The focus is on predicting the most pathogenic GABRD VUS to enhance precision medicine and improve our understanding of relevant pathophysiology.
Methods: The study employs a combination of in silico algorithms to analyze 82 variants of unknown clinical significance of GABRD gene sourced from the ClinVar database. Initially, separate algorithms based on sequence homology are utilized to assess this variant set. Subsequently, consensus variants predicted as pathogenic undergo further evaluation through a web server employing an algorithm based on structural homology. The resulting 11 variants are then validated using in silico tools that assess variant effects based on genetic and molecular data. The evaluation includes consideration of disease association and protein stability due to amino acid substitutions.
Results: The study identifies specific variants (L111R, R114C, D123N, G150S, and L243P) in the coding region of the GABRD gene, which are predicted as deleterious by multiple algorithms. These variants are evolutionarily conserved, mapped onto the extracellular domain of the δ subunit, and associated with idiopathic generalized epilepsy.
Conclusions: The findings suggest structural or functional consequences that lead to pathogenicity, offering valuable insights for wet-lab experimentation. Besides, the findings contribute to the validation of clinically significant genetic variants in the GABRD gene, which is critical for epilepsy precision medicine.
期刊介绍:
The International Journal of Neuroscience publishes original research articles, reviews, brief scientific reports, case studies, letters to the editor and book reviews concerned with problems of the nervous system and related clinical studies, epidemiology, neuropathology, medical and surgical treatment options and outcomes, neuropsychology and other topics related to the research and care of persons with neurologic disorders. The focus of the journal is clinical and transitional research. Topics covered include but are not limited to: ALS, ataxia, autism, brain tumors, child neurology, demyelinating diseases, epilepsy, genetics, headache, lysosomal storage disease, mitochondrial dysfunction, movement disorders, multiple sclerosis, myopathy, neurodegenerative diseases, neuromuscular disorders, neuropharmacology, neuropsychiatry, neuropsychology, pain, sleep disorders, stroke, and other areas related to the neurosciences.