Ryan L Kyle, Melanie Prout, Graham Le Gros, Marcus J Robinson
{"title":"STAT6 tunes maximum T cell IL-4 production from stochastically regulated Il4 alleles","authors":"Ryan L Kyle, Melanie Prout, Graham Le Gros, Marcus J Robinson","doi":"10.1111/imcb.12726","DOIUrl":null,"url":null,"abstract":"<p>T helper 2 (Th2) cells stochastically express from the <i>Il4</i> locus but it has not been determined whether allelic expression is linked or independent. Here, we provide evidence that alleles are independently activated and inactivated. We compared <i>Il4</i> locus expression in T cells from hemizygous IL-4 reporter mice in culture and <i>in vivo</i> following exposure to type 2 immunogens. In culture, <i>Il4</i> alleles had independent, heritable expression probabilities. Modeling showed that in co-expressors, dual allele transcription occurs for only short periods, limiting per-cell mRNA variation in individual cells within a population of Th2 cells. <i>In vivo</i> profiles suggested that early in the immune response, IL-4 output was derived predominantly from single alleles, but co-expression became more frequent over time and were tuned by STAT6, supporting the probabilistic regulation of <i>Il4</i> alleles <i>in vivo</i> among committed IL-4 producers. We suggest an imprinted probability of expression from individual alleles with a short transcriptional shutoff time controls the magnitude of T cell IL-4 output, but the amount produced per allele is amplified by STAT6 signaling. This form of regulation may be a relevant general mechanism governing cytokine expression.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":"102 3","pages":"194-211"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/imcb.12726","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imcb.12726","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
T helper 2 (Th2) cells stochastically express from the Il4 locus but it has not been determined whether allelic expression is linked or independent. Here, we provide evidence that alleles are independently activated and inactivated. We compared Il4 locus expression in T cells from hemizygous IL-4 reporter mice in culture and in vivo following exposure to type 2 immunogens. In culture, Il4 alleles had independent, heritable expression probabilities. Modeling showed that in co-expressors, dual allele transcription occurs for only short periods, limiting per-cell mRNA variation in individual cells within a population of Th2 cells. In vivo profiles suggested that early in the immune response, IL-4 output was derived predominantly from single alleles, but co-expression became more frequent over time and were tuned by STAT6, supporting the probabilistic regulation of Il4 alleles in vivo among committed IL-4 producers. We suggest an imprinted probability of expression from individual alleles with a short transcriptional shutoff time controls the magnitude of T cell IL-4 output, but the amount produced per allele is amplified by STAT6 signaling. This form of regulation may be a relevant general mechanism governing cytokine expression.
期刊介绍:
The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.