Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology
D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber
{"title":"Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering.","authors":"D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber","doi":"10.1007/10_2023_247","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"83-117"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2023_247","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.

植物与蓝藻共培养:农业和生物加工工程生产系统的新途径。
由于全球人口的增长,如果不向土壤中添加氮元素,就无法确保充足的粮食供应。现代农业产量的约 30-50% 归功于化肥的使用。然而,过度施肥威胁着生物多样性,比如喜氮、生长快的物种会过度生长其他物种。人工肥料的生产会产生氮氧化物,成为温室气体。此外,田地过度施肥还会释放氨,通过酸化和富营养化破坏地表水。重营养蓝藻通常形成天然、稳定的生物膜,可以固定大气中的氮,并将其释放到环境中。因此,它们可以替代人工肥料。此外,生物膜还能稳定土壤,从而防止土壤侵蚀和干燥。本章介绍了蓝藻作为天然肥料的使用潜力。稍后将讨论植物和胼胝体细胞等可能的合作伙伴以及人工共培养的优势。此外,还将介绍用于研究人工协同培养的不同培养系统。最后,将讨论人工共培养在琼脂工业中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信