{"title":"Fundamentals and Rational Design of Heterogeneous C-N Coupling Electrocatalysts for Urea Synthesis at Ambient Conditions","authors":"Yuchi Wan, Muyun Zheng, Wei Yan, Jiujun Zhang, Ruitao Lv","doi":"10.1002/aenm.202303588","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic C-N coupling reaction is regarded as a promising strategy for achieving clean and sustainable urea production by coreducing CO<sub>2</sub> and nitrogen species, thus contributing to carbon neutrality and the artificial nitrogen cycle. However, restricted by the sluggish adsorption of reactants, competitive side reactions, and multistep reaction pathways, the electrochemical urea production suffers from a low urea yield rate and low selectivity so far. In order to comprehensively improve urea synthesis performance, it is crucial to develop highly efficient catalysts for electrochemical C-N coupling. In this article, the catalyst-designing strategies, C-N coupling mechanisms, and fundamental research methods are reviewed. For the coreduction of CO<sub>2</sub> and different nitrogen species, several prevailing reaction mechanisms are discussed. With the aim of establishing the standard research system, the fundamentals of electrocatalytic urea synthesis research are introduced. The most important catalyst-designing strategies for boosting the electrocatalytic urea production are discussed, including heteroatom doping, vacancy engineering, crystal facet regulation, atom-scale modulation, alloying and heterostructure construction. Finally, the challenges and perspectives are proposed for future industrial applications of electrochemical urea production by C-N coupling.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 28","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202303588","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic C-N coupling reaction is regarded as a promising strategy for achieving clean and sustainable urea production by coreducing CO2 and nitrogen species, thus contributing to carbon neutrality and the artificial nitrogen cycle. However, restricted by the sluggish adsorption of reactants, competitive side reactions, and multistep reaction pathways, the electrochemical urea production suffers from a low urea yield rate and low selectivity so far. In order to comprehensively improve urea synthesis performance, it is crucial to develop highly efficient catalysts for electrochemical C-N coupling. In this article, the catalyst-designing strategies, C-N coupling mechanisms, and fundamental research methods are reviewed. For the coreduction of CO2 and different nitrogen species, several prevailing reaction mechanisms are discussed. With the aim of establishing the standard research system, the fundamentals of electrocatalytic urea synthesis research are introduced. The most important catalyst-designing strategies for boosting the electrocatalytic urea production are discussed, including heteroatom doping, vacancy engineering, crystal facet regulation, atom-scale modulation, alloying and heterostructure construction. Finally, the challenges and perspectives are proposed for future industrial applications of electrochemical urea production by C-N coupling.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.