An Alternative Run-Up Strategy for Salient Pole Wound Field Synchronous Machines

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Roberto Felicetti;Vinícius M. de Albuquerque;Urban Lundin
{"title":"An Alternative Run-Up Strategy for Salient Pole Wound Field Synchronous Machines","authors":"Roberto Felicetti;Vinícius M. de Albuquerque;Urban Lundin","doi":"10.1109/OJIA.2024.3352134","DOIUrl":null,"url":null,"abstract":"Salient pole wound field synchronous motors find many industrial applications, thanks to their favorable characteristics: reactive power regulation, stiff mechanical characteristic, and overall outstanding efficiency. Nevertheless, their competitiveness toward the induction motors, especially for medium and small power sizes, depends crucially on their capability to be asynchronously started as well. Regrettably, the asynchronous run-up of a synchronous motor can be sometimes very problematic because of thermal issues, torsional vibrations, and grid voltage disturbances. This article presents an alternative method of starting salient pole wound field synchronous machines by activating the field winding in a special manner, which makes it possible to mitigate the three problems at once. The suggested method is validated through a two-dimensional finite elements simulation and by starting a 60-kVA prototype generator. The requirements for the application of the proposed run-up strategy are critically discussed together with related pros and cons.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"5 ","pages":"15-28"},"PeriodicalIF":7.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387787","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10387787/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Salient pole wound field synchronous motors find many industrial applications, thanks to their favorable characteristics: reactive power regulation, stiff mechanical characteristic, and overall outstanding efficiency. Nevertheless, their competitiveness toward the induction motors, especially for medium and small power sizes, depends crucially on their capability to be asynchronously started as well. Regrettably, the asynchronous run-up of a synchronous motor can be sometimes very problematic because of thermal issues, torsional vibrations, and grid voltage disturbances. This article presents an alternative method of starting salient pole wound field synchronous machines by activating the field winding in a special manner, which makes it possible to mitigate the three problems at once. The suggested method is validated through a two-dimensional finite elements simulation and by starting a 60-kVA prototype generator. The requirements for the application of the proposed run-up strategy are critically discussed together with related pros and cons.
尖极绕线式同步电机的另一种起动策略
由于具有无功功率调节、坚固的机械特性和出色的整体效率等有利特性,尖极绕线式同步电机在工业领域得到了广泛应用。然而,与感应电动机相比,它们的竞争力,尤其是在中小功率方面的竞争力,主要取决于它们的异步启动能力。遗憾的是,由于热问题、扭转振动和电网电压干扰,同步电机的异步启动有时会很成问题。本文提出了另一种方法,通过以特殊方式激活绕组来启动斜极绕组同步电机,从而可以同时缓解这三个问题。通过二维有限元仿真和启动一台 60 千伏安的原型发电机,对所建议的方法进行了验证。对应用所建议的启动策略的要求以及相关利弊进行了批判性讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信