{"title":"Fabrication, microstructure and properties of advanced ceramic-reinforced composites for dental implants: a review.","authors":"Mugilan Thanigachalam, Aezhisai Vallavi Muthusamy Subramanian","doi":"10.12336/biomatertransl.2023.03.004","DOIUrl":null,"url":null,"abstract":"<p><p>The growing field of dental implant research and development has emerged to rectify the problems associated with human dental health issues. Bio-ceramics are widely used in the medical field, particularly in dental implants, ortho implants, and medical and surgical tools. Various materials have been used in those applications to overcome the limitations and problems associated with their performance and its impact on dental implants. In this article we review and describe the fabrication methods employed for ceramic composites, the microstructure analyses used to identify significant effects on fracture behaviour, and various methods of enhancing mechanical properties. Further, the collective data show that the sintering technique improves the density, hardness, fracture toughness, and flexural strength of alumina- and zirconia-based composites compared with other methods. Future research aspects and suggestions are discussed systematically.</p>","PeriodicalId":58820,"journal":{"name":"Biomaterials Translational","volume":"4 3","pages":"151-165"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Translational","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12336/biomatertransl.2023.03.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The growing field of dental implant research and development has emerged to rectify the problems associated with human dental health issues. Bio-ceramics are widely used in the medical field, particularly in dental implants, ortho implants, and medical and surgical tools. Various materials have been used in those applications to overcome the limitations and problems associated with their performance and its impact on dental implants. In this article we review and describe the fabrication methods employed for ceramic composites, the microstructure analyses used to identify significant effects on fracture behaviour, and various methods of enhancing mechanical properties. Further, the collective data show that the sintering technique improves the density, hardness, fracture toughness, and flexural strength of alumina- and zirconia-based composites compared with other methods. Future research aspects and suggestions are discussed systematically.