{"title":"Lectins as versatile tools to explore cellular glycosylation.","authors":"Susan Brooks","doi":"10.4081/ejh.2024.3959","DOIUrl":null,"url":null,"abstract":"<p><p>Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping - and understanding - of the glycome.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2024.3959","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lectins are naturally occurring carbohydrate-binding proteins that are ubiquitous in nature and highly selective for their, often incompletely characterised, binding partners. From their discovery in the late 1880s to the present day, they have provided a broad palette of versatile tools for exploring the glycosylation of cells and tissues and for uncovering the myriad functions of glycosylation in biological systems. The technique of lectin histochemistry, used to map the glycosylation of tissues, has been instrumental in revealing the changing profile of cellular glycosylation in development, health and disease. It has been especially enlightening in revealing fundamental alterations in cellular glycosylation that accompany cancer development and metastasis, and has facilitated the identification of glycosylated biomarkers that can predict prognosis and may have utility in development of early detection and screening, Moreover, it has led to insights into the functional role of glycosylation in healthy tissues and in the processes underlying disease. Recent advances in biotechnology mean that our understanding of the precise binding partners of lectins is improving and an ever-wider range of lectins are available, including recombinant human lectins and lectins with enhanced, engineered properties. Moreover, use of traditional histochemistry to support a broad range of cutting-edge technologies and the development of high throughout microarray platforms opens the way for ever more sophisticated mapping - and understanding - of the glycome.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.