A MapReduce-Based Approach for Fast Connected Components Detection from Large-Scale Networks.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sajid Yousuf Bhat, Muhammad Abulaish
{"title":"A MapReduce-Based Approach for Fast Connected Components Detection from Large-Scale Networks.","authors":"Sajid Yousuf Bhat, Muhammad Abulaish","doi":"10.1089/big.2022.0264","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to increasing size of the real-world networks, their processing using classical techniques has become infeasible. The amount of storage and central processing unit time required for processing large networks is far beyond the capabilities of a high-end computing machine. Moreover, real-world network data are generally distributed in nature because they are collected and stored on distributed platforms. This has popularized the use of the MapReduce, a distributed data processing framework, for analyzing real-world network data. Existing MapReduce-based methods for connected components detection mainly struggle to minimize the number of MapReduce rounds and the amount of data generated and forwarded to the subsequent rounds. This article presents an efficient MapReduce-based approach for finding connected components, which does not forward the complete set of connected components to the subsequent rounds; instead, it writes them to the Hadoop Distributed File System as soon as they are found to reduce the amount of data forwarded to the subsequent rounds. It also presents an application of the proposed method in contact tracing. The proposed method is evaluated on several network data sets and compared with two state-of-the-art methods. The empirical results reveal that the proposed method performs significantly better and is scalable to find connected components in large-scale networks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to increasing size of the real-world networks, their processing using classical techniques has become infeasible. The amount of storage and central processing unit time required for processing large networks is far beyond the capabilities of a high-end computing machine. Moreover, real-world network data are generally distributed in nature because they are collected and stored on distributed platforms. This has popularized the use of the MapReduce, a distributed data processing framework, for analyzing real-world network data. Existing MapReduce-based methods for connected components detection mainly struggle to minimize the number of MapReduce rounds and the amount of data generated and forwarded to the subsequent rounds. This article presents an efficient MapReduce-based approach for finding connected components, which does not forward the complete set of connected components to the subsequent rounds; instead, it writes them to the Hadoop Distributed File System as soon as they are found to reduce the amount of data forwarded to the subsequent rounds. It also presents an application of the proposed method in contact tracing. The proposed method is evaluated on several network data sets and compared with two state-of-the-art methods. The empirical results reveal that the proposed method performs significantly better and is scalable to find connected components in large-scale networks.

基于 MapReduce 的大规模网络连接组件快速检测方法。
由于现实世界的网络规模越来越大,使用传统技术处理这些网络已经变得不可行。处理大型网络所需的存储量和中央处理单元时间远远超出了高端计算机的能力。此外,现实世界的网络数据通常是分布式的,因为它们是在分布式平台上收集和存储的。因此,使用分布式数据处理框架 MapReduce 来分析现实世界的网络数据得到了普及。现有的基于 MapReduce 的连接组件检测方法主要致力于尽量减少 MapReduce 轮数以及生成并转发到后续轮的数据量。本文提出了一种高效的基于 MapReduce 的查找连接组件的方法,该方法不会将连接组件的完整集合转发给后续轮次,而是在找到连接组件后立即将其写入 Hadoop 分布式文件系统,以减少转发给后续轮次的数据量。报告还介绍了所提方法在接触追踪中的应用。本文在多个网络数据集上对所提出的方法进行了评估,并将其与两种最先进的方法进行了比较。实证结果表明,所提出的方法在大规模网络中寻找连接组件方面表现明显更好,并且具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信