Lukas Jakob Moser, Victor Mergen, Thomas Allmendinger, Robert Manka, Matthias Eberhard, Hatem Alkadhi
{"title":"A Novel Reconstruction Technique to Reduce Stair-Step Artifacts in Sequential Mode Coronary CT Angiography.","authors":"Lukas Jakob Moser, Victor Mergen, Thomas Allmendinger, Robert Manka, Matthias Eberhard, Hatem Alkadhi","doi":"10.1097/RLI.0000000000001066","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Prospective electrocardiography-triggering is one of the most commonly used cardiac computed tomography (CT) scan modes but can be susceptible to stair-step artifacts in the transition areas of an acquisition over multiple cardiac cycles. We evaluated a novel reconstruction algorithm to reduce the occurrence and severity of such artifacts in sequential coronary CT angiography.</p><p><strong>Materials and methods: </strong>In this institutional review board-approved, retrospective study, 50 consecutive patients (16 females; mean age, 58.9 ± 15.2) were included who underwent coronary CT angiography on a dual-source photon-counting detector CT in the sequential ultra-high-resolution mode with a detector collimation of 120 × 0.2 mm. Each scan was reconstructed without (hereafter called standard reconstruction) and with the novel ZeeFree reconstruction algorithm, which aims to minimize stair-step artifacts. The presence and extent of stair-step artifacts were rated by 2 independent, blinded readers on a 4-point discrete visual scale. The relationship between the occurrences of artifacts was correlated with the average and variability of heart rate and with patient characteristics.</p><p><strong>Results: </strong>A total of 504 coronary segments were included into the analyses. In standard reconstructions, reader 1 reported stair-step artifacts in 40/504 (7.9%) segments, from which 12/504 led to nondiagnostic image quality (2.4% of all segments). Reader 2 reported 56/504 (11.1%) stair-step artifacts, from which 11/504 lead to nondiagnostic image quality (2.2% of all segments). With the ZeeFree algorithm, 9/12 (75%) and 8/11 (73%) of the nondiagnostic segments improved to a diagnostic quality for readers 1 and 2, respectively. The ZeeFree reconstruction algorithm significantly reduced the frequency and extent of stair-step artifacts compared with standard reconstructions for both readers ( P < 0.001, each). Heart rate variability and body mass index were significantly related to the occurrence of stair-step artifacts ( P < 0.05).</p><p><strong>Conclusions: </strong>Our study demonstrates the feasibility and effectiveness of a novel reconstruction algorithm leading to a significant reduction of stair-step artifacts and, hence, a reduction of coronary segments with a nondiagnostic image quality in sequential ultra-high-resolution coronary photon-counting detector CT angiography.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"622-628"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001066","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Prospective electrocardiography-triggering is one of the most commonly used cardiac computed tomography (CT) scan modes but can be susceptible to stair-step artifacts in the transition areas of an acquisition over multiple cardiac cycles. We evaluated a novel reconstruction algorithm to reduce the occurrence and severity of such artifacts in sequential coronary CT angiography.
Materials and methods: In this institutional review board-approved, retrospective study, 50 consecutive patients (16 females; mean age, 58.9 ± 15.2) were included who underwent coronary CT angiography on a dual-source photon-counting detector CT in the sequential ultra-high-resolution mode with a detector collimation of 120 × 0.2 mm. Each scan was reconstructed without (hereafter called standard reconstruction) and with the novel ZeeFree reconstruction algorithm, which aims to minimize stair-step artifacts. The presence and extent of stair-step artifacts were rated by 2 independent, blinded readers on a 4-point discrete visual scale. The relationship between the occurrences of artifacts was correlated with the average and variability of heart rate and with patient characteristics.
Results: A total of 504 coronary segments were included into the analyses. In standard reconstructions, reader 1 reported stair-step artifacts in 40/504 (7.9%) segments, from which 12/504 led to nondiagnostic image quality (2.4% of all segments). Reader 2 reported 56/504 (11.1%) stair-step artifacts, from which 11/504 lead to nondiagnostic image quality (2.2% of all segments). With the ZeeFree algorithm, 9/12 (75%) and 8/11 (73%) of the nondiagnostic segments improved to a diagnostic quality for readers 1 and 2, respectively. The ZeeFree reconstruction algorithm significantly reduced the frequency and extent of stair-step artifacts compared with standard reconstructions for both readers ( P < 0.001, each). Heart rate variability and body mass index were significantly related to the occurrence of stair-step artifacts ( P < 0.05).
Conclusions: Our study demonstrates the feasibility and effectiveness of a novel reconstruction algorithm leading to a significant reduction of stair-step artifacts and, hence, a reduction of coronary segments with a nondiagnostic image quality in sequential ultra-high-resolution coronary photon-counting detector CT angiography.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.