Lactic acid fermentation of kamaboko, a heated Alaska pollock surimi, enhances angiotensin I-converting enzyme inhibitory activity via fish protein hydrolysis.
IF 0.8 4区 生物学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Lactic acid fermentation of kamaboko, a heated Alaska pollock surimi, enhances angiotensin I-converting enzyme inhibitory activity via fish protein hydrolysis.","authors":"Kazuya Kobayashi, Natsuka Takada, Yuki Matsubara, Hiroaki Okuhara, Masaki Oosaka","doi":"10.2323/jgam.2024.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>To enhance the value of surimi, efforts have been made to develop a fermentation method with lactic acid bacteria (LAB) to proteolyze fish protein. However, fermenting unheated surimi poses a spoilage risk due to its high bacterial content. Surimi heat treatment can prevent spoilage, but gel formation induced by heating introduces another technical issue: it hinders uniform fermentation. Thus, this study aims to observe the proteolysis and enhance the functionality of seafood product through lactic acid fermentation of kamaboko, a heated surimi. Upon analyzing the kamaboko fermented with Lactobacillus helveticus JCM1004, we observed that LAB produced protease, resulting in the degradation of myosin heavy chain and actin during fermentation. Lactic acid fermentation significantly augmented the peptide content of kamaboko, subsequently elevating the angiotensin Ⅰ-converting enzyme (ACE) inhibitory activity in 200-fold diluted extract of fermented kamaboko to approximately 70% and higher. Notably, our investigation revealed that proteolysis was confined to the surface of kamaboko, as evidenced by SDS-PAGE analysis. This observation implies that the surface area of kamaboko influences the ACE inhibitory activity. Through a comparative analysis of various bacterial strains, we demonstrated that the increase in ACE inhibitory activity is contingent on the protease generated by LAB. These results suggest that LAB-mediated proteolysis of fish proteins liberates bioactive peptides, thereby manifesting in the ACE inhibitory activity. In summary, this study underscores that the fermentation of kamaboko employing proteolytic LAB holds promise in the development of novel functional seafood products.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2024.01.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the value of surimi, efforts have been made to develop a fermentation method with lactic acid bacteria (LAB) to proteolyze fish protein. However, fermenting unheated surimi poses a spoilage risk due to its high bacterial content. Surimi heat treatment can prevent spoilage, but gel formation induced by heating introduces another technical issue: it hinders uniform fermentation. Thus, this study aims to observe the proteolysis and enhance the functionality of seafood product through lactic acid fermentation of kamaboko, a heated surimi. Upon analyzing the kamaboko fermented with Lactobacillus helveticus JCM1004, we observed that LAB produced protease, resulting in the degradation of myosin heavy chain and actin during fermentation. Lactic acid fermentation significantly augmented the peptide content of kamaboko, subsequently elevating the angiotensin Ⅰ-converting enzyme (ACE) inhibitory activity in 200-fold diluted extract of fermented kamaboko to approximately 70% and higher. Notably, our investigation revealed that proteolysis was confined to the surface of kamaboko, as evidenced by SDS-PAGE analysis. This observation implies that the surface area of kamaboko influences the ACE inhibitory activity. Through a comparative analysis of various bacterial strains, we demonstrated that the increase in ACE inhibitory activity is contingent on the protease generated by LAB. These results suggest that LAB-mediated proteolysis of fish proteins liberates bioactive peptides, thereby manifesting in the ACE inhibitory activity. In summary, this study underscores that the fermentation of kamaboko employing proteolytic LAB holds promise in the development of novel functional seafood products.
期刊介绍:
JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.