Efficient estimation for left-truncated competing risks regression for case-cohort studies.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-01-29 DOI:10.1093/biomtc/ujad008
Xi Fang, Kwang Woo Ahn, Jianwen Cai, Soyoung Kim
{"title":"Efficient estimation for left-truncated competing risks regression for case-cohort studies.","authors":"Xi Fang, Kwang Woo Ahn, Jianwen Cai, Soyoung Kim","doi":"10.1093/biomtc/ujad008","DOIUrl":null,"url":null,"abstract":"<p><p>The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826882/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujad008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.

病例队列研究中左截断竞争风险回归的有效估计。
病例队列研究设计为具有竞争风险结果的大型队列研究提供了一种具有成本效益的研究设计。比例子分布危害模型被广泛用于估计协变量对竞争风险数据累积发病率函数的直接影响。在生物医学研究中,经常会出现左截断,这给分析带来了额外的挑战。现有的用于具有竞争风险数据的病例队列研究的反概率加权方法不仅没有解决左截断问题,而且在完全观测协变量的回归参数估计中效率低下。我们提出了一种针对左截断竞争风险数据的增强型反概率加权估计方程,以解决现有文献的这些局限性。我们还提出了一种在其他原因的额外信息可用时更有效的估计方法。所提出的估计值具有一致性和渐近正态分布。模拟研究表明,所提出的估计器是无偏的,并能提高回归参数估计的效率。我们使用提出的方法分析了社区动脉粥样硬化风险研究数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信