Fructose Potentiates Bone Loss and Marrow Adipose Tissue Accumulation by Inhibiting Adenosine 5'-Monophosphate-Activated Protein Kinase in Mesenchymal Stem Cells.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-04-15 DOI:10.1093/stmcls/sxae001
Ziqi Yan, Juan Du, Rui Zhao, Xu Liu, Junji Xu, Lijia Guo, Yi Liu
{"title":"Fructose Potentiates Bone Loss and Marrow Adipose Tissue Accumulation by Inhibiting Adenosine 5'-Monophosphate-Activated Protein Kinase in Mesenchymal Stem Cells.","authors":"Ziqi Yan, Juan Du, Rui Zhao, Xu Liu, Junji Xu, Lijia Guo, Yi Liu","doi":"10.1093/stmcls/sxae001","DOIUrl":null,"url":null,"abstract":"<p><p>Increased fructose consumption has been elucidated to contribute to metabolic diseases. Bone is a dynamic organ that undergoes constant remodeling. However, the effects of fructose on bone health are still in dispute. Here, we identified fructose deteriorated bone mineral density while promoting the abundance of bone marrow adipose tissue. Fructose remarkably promoted the bone marrow mesenchymal stem cells' (BMMSCs) adipogenic commitment at the expense of osteogenic commitment. Fructose boosted the glycolysis of BMMSCs and inhibited phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which played a crucial role in bone-fat alteration. Our results suggested that fructose potentiated bone loss and marrow adipose tissue accumulation by suppressing AMPK activation in BMMSCs. Understanding fructose which affected bone metabolism was thus of primary importance in order to establish preventative measures or treatments for this condition.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"374-384"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increased fructose consumption has been elucidated to contribute to metabolic diseases. Bone is a dynamic organ that undergoes constant remodeling. However, the effects of fructose on bone health are still in dispute. Here, we identified fructose deteriorated bone mineral density while promoting the abundance of bone marrow adipose tissue. Fructose remarkably promoted the bone marrow mesenchymal stem cells' (BMMSCs) adipogenic commitment at the expense of osteogenic commitment. Fructose boosted the glycolysis of BMMSCs and inhibited phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which played a crucial role in bone-fat alteration. Our results suggested that fructose potentiated bone loss and marrow adipose tissue accumulation by suppressing AMPK activation in BMMSCs. Understanding fructose which affected bone metabolism was thus of primary importance in order to establish preventative measures or treatments for this condition.

果糖通过抑制间充质干细胞中的 5'-Monophosphate-Activated Protein Kinase 促成骨质流失和骨髓脂肪组织的积累
果糖摄入量的增加已被证实会导致代谢性疾病。骨骼是一个不断重塑的动态器官。然而,果糖对骨骼健康的影响仍存在争议。在这里,我们发现果糖会降低骨矿物质密度,同时促进骨髓脂肪组织的丰富。果糖显著促进了骨髓间充质干细胞(BMMSCs)的成脂承诺,而牺牲了成骨承诺。果糖促进了骨髓间充质干细胞的糖酵解,抑制了在骨脂肪变化中起关键作用的5'-单磷酸腺苷激活蛋白激酶(AMPK)的磷酸化。我们的研究结果表明,果糖通过抑制 BMMSCs 中 AMPK 的激活,加剧了骨质流失和骨髓脂肪组织的堆积。因此,了解果糖对骨代谢的影响对于制定预防措施或治疗方法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信