High-probability generalization bounds for pointwise uniformly stable algorithms

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jun Fan , Yunwen Lei
{"title":"High-probability generalization bounds for pointwise uniformly stable algorithms","authors":"Jun Fan ,&nbsp;Yunwen Lei","doi":"10.1016/j.acha.2024.101632","DOIUrl":null,"url":null,"abstract":"<div><p>Algorithmic stability is a fundamental concept in statistical learning theory to understand the generalization behavior of optimization algorithms. Existing high-probability bounds are developed for the generalization gap as measured by function values and require the algorithm to be uniformly stable. In this paper, we introduce a novel stability measure called pointwise<span> uniform stability by considering the sensitivity of the algorithm with respect to the perturbation of each training example. We show this weaker pointwise uniform stability guarantees almost optimal bounds, and gives the first high-probability bound for the generalization gap as measured by gradients. Sharper bounds<span> are given for strongly convex and smooth problems. We further apply our general result to derive improved generalization bounds for stochastic gradient descent. As a byproduct, we develop concentration inequalities for a summation of weakly-dependent vector-valued random variables.</span></span></p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101632"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Algorithmic stability is a fundamental concept in statistical learning theory to understand the generalization behavior of optimization algorithms. Existing high-probability bounds are developed for the generalization gap as measured by function values and require the algorithm to be uniformly stable. In this paper, we introduce a novel stability measure called pointwise uniform stability by considering the sensitivity of the algorithm with respect to the perturbation of each training example. We show this weaker pointwise uniform stability guarantees almost optimal bounds, and gives the first high-probability bound for the generalization gap as measured by gradients. Sharper bounds are given for strongly convex and smooth problems. We further apply our general result to derive improved generalization bounds for stochastic gradient descent. As a byproduct, we develop concentration inequalities for a summation of weakly-dependent vector-valued random variables.

点式均匀稳定算法的高概率泛化边界
算法稳定性是统计学习理论中的一个基本概念,用于理解优化算法的泛化行为。现有的高概率边界是针对以函数值衡量的泛化差距而开发的,并要求算法具有均匀稳定性。在本文中,我们通过考虑算法对每个训练实例扰动的敏感性,引入了一种新的稳定性度量,称为点均匀稳定性。我们证明了这种较弱的点均匀稳定性能保证几乎最优的边界,并首次给出了以梯度衡量的泛化差距的高概率边界。对于强凸问题和平滑问题,我们给出了更精确的界限。我们进一步应用我们的一般结果,推导出随机梯度下降的改进广义边界。作为副产品,我们为弱依赖向量随机变量的求和建立了集中不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信