{"title":"Salivary Biomarkers for Oral Cancer Detection: Insights from Human DNA and RNA Analysis.","authors":"Archana Navale, Atharva Deshpande","doi":"10.2174/0118715257269271231201094946","DOIUrl":null,"url":null,"abstract":"<p><p>Oral cancer is a significant global health concern, with a high mortality rate mainly due to late-stage diagnosis. Early detection plays a critical role in improving patient outcomes, highlighting the need for non-invasive and accessible screening methods. Salivary biomarkers have emerged as a promising avenue for oral cancer detection, leveraging advancements in human DNA and RNA analysis. Several DNA-based biomarkers, such as genetic mutations, chromosomal aberrations, and epigenetic alterations, have shown promise in detecting oral cancer at various stages. Likewise, RNA-based biomarkers, including microRNAs, long non-coding RNAs, and messenger RNAs, have demonstrated potential for diagnosing oral cancer and predicting treatment outcomes. The integration of high-throughput sequencing technologies, such as next-generation sequencing and transcriptomic profiling, has enabled the identification of novel biomarkers and provided deeper insights into the molecular mechanisms underlying oral cancer development and progression. Despite the promising results, challenges remain in standardizing sample collection, establishing robust biomarker panels, and validating their clinical utility. Nevertheless, salivary biomarkers hold great promise as a non-invasive, cost-effective, and accessible approach for oral cancer detection, ultimately leading to improved patient outcomes through early diagnosis and intervention. The analysis of genetic material obtained from saliva offers several advantages, including ease of collection, non-invasiveness, and the potential for repeated sampling. Furthermore, saliva reflects the physiological and pathological status of the oral cavity, making it an ideal source for biomarker discovery and validation. This article presents a comprehensive review of the current research on salivary biomarkers for oral cancer detection, focusing on insights gained from human DNA and RNA analysis.</p>","PeriodicalId":93924,"journal":{"name":"Cardiovascular & hematological agents in medicinal chemistry","volume":" ","pages":"249-257"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular & hematological agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715257269271231201094946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oral cancer is a significant global health concern, with a high mortality rate mainly due to late-stage diagnosis. Early detection plays a critical role in improving patient outcomes, highlighting the need for non-invasive and accessible screening methods. Salivary biomarkers have emerged as a promising avenue for oral cancer detection, leveraging advancements in human DNA and RNA analysis. Several DNA-based biomarkers, such as genetic mutations, chromosomal aberrations, and epigenetic alterations, have shown promise in detecting oral cancer at various stages. Likewise, RNA-based biomarkers, including microRNAs, long non-coding RNAs, and messenger RNAs, have demonstrated potential for diagnosing oral cancer and predicting treatment outcomes. The integration of high-throughput sequencing technologies, such as next-generation sequencing and transcriptomic profiling, has enabled the identification of novel biomarkers and provided deeper insights into the molecular mechanisms underlying oral cancer development and progression. Despite the promising results, challenges remain in standardizing sample collection, establishing robust biomarker panels, and validating their clinical utility. Nevertheless, salivary biomarkers hold great promise as a non-invasive, cost-effective, and accessible approach for oral cancer detection, ultimately leading to improved patient outcomes through early diagnosis and intervention. The analysis of genetic material obtained from saliva offers several advantages, including ease of collection, non-invasiveness, and the potential for repeated sampling. Furthermore, saliva reflects the physiological and pathological status of the oral cavity, making it an ideal source for biomarker discovery and validation. This article presents a comprehensive review of the current research on salivary biomarkers for oral cancer detection, focusing on insights gained from human DNA and RNA analysis.