Fangfang Zhu, Ji Ding, Xiang Li, Yuer Lu, Xiao Liu, Frank Jiang, Qi Zhao, Honghong Su, Jianwei Shuai
{"title":"MEAs-Filter: a novel filter framework utilizing evolutionary algorithms for cardiovascular diseases diagnosis.","authors":"Fangfang Zhu, Ji Ding, Xiang Li, Yuer Lu, Xiao Liu, Frank Jiang, Qi Zhao, Honghong Su, Jianwei Shuai","doi":"10.1007/s13755-023-00268-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease management often involves adjusting medication dosage based on changes in electrocardiogram (ECG) signals' waveform and rhythm. However, the diagnostic utility of ECG signals is often hindered by various types of noise interference. In this work, we propose a novel filter based on a multi-engine evolution framework named MEAs-Filter to address this issue. Our approach eliminates the need for predefined dimensions and allows adaptation to diverse ECG morphologies. By leveraging state-of-the-art optimization algorithms as evolution engine and incorporating prior information inputs from classical filters, MEAs-Filter achieves superior performance while minimizing order. We evaluate the effectiveness of MEAs-Filter on a real ECG database and compare it against commonly used filters such as the Butterworth, Chebyshev filters, and evolution algorithm-based (EA-based) filters. The experimental results indicate that MEAs-Filter outperforms other filters by achieving a reduction of approximately 30% to 60% in terms of the loss function compared to the other algorithms. In denoising experiments conducted on ECG waveforms across various scenarios, MEAs-Filter demonstrates an improvement of approximately 20% in signal-to-noise (<i>SNR</i>) ratio and a 9% improvement in correlation. Moreover, it does not exhibit higher losses of the R-wave compared to other filters. These findings highlight the potential of MEAs-Filter as a valuable tool for high-fidelity extraction of ECG signals, enabling accurate diagnosis in the field of cardiovascular diseases.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"8"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10805910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00268-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease management often involves adjusting medication dosage based on changes in electrocardiogram (ECG) signals' waveform and rhythm. However, the diagnostic utility of ECG signals is often hindered by various types of noise interference. In this work, we propose a novel filter based on a multi-engine evolution framework named MEAs-Filter to address this issue. Our approach eliminates the need for predefined dimensions and allows adaptation to diverse ECG morphologies. By leveraging state-of-the-art optimization algorithms as evolution engine and incorporating prior information inputs from classical filters, MEAs-Filter achieves superior performance while minimizing order. We evaluate the effectiveness of MEAs-Filter on a real ECG database and compare it against commonly used filters such as the Butterworth, Chebyshev filters, and evolution algorithm-based (EA-based) filters. The experimental results indicate that MEAs-Filter outperforms other filters by achieving a reduction of approximately 30% to 60% in terms of the loss function compared to the other algorithms. In denoising experiments conducted on ECG waveforms across various scenarios, MEAs-Filter demonstrates an improvement of approximately 20% in signal-to-noise (SNR) ratio and a 9% improvement in correlation. Moreover, it does not exhibit higher losses of the R-wave compared to other filters. These findings highlight the potential of MEAs-Filter as a valuable tool for high-fidelity extraction of ECG signals, enabling accurate diagnosis in the field of cardiovascular diseases.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.