Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe
{"title":"The least singular value of a random symmetric matrix","authors":"Marcelo Campos, Matthew Jenssen, Marcus Michelen, Julian Sahasrabudhe","doi":"10.1017/fmp.2023.29","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline1.png\" /> <jats:tex-math> $n \\times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> symmetric matrix with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline2.png\" /> <jats:tex-math> $(A_{i,j})_{i\\leqslant j}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independent and identically distributed according to a subgaussian distribution. We show that <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}\\mathbb{P}(\\sigma_{\\min}(A) \\leqslant \\varepsilon n^{-1/2} ) \\leqslant C \\varepsilon + e^{-cn},\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline3.png\" /> <jats:tex-math> $\\sigma _{\\min }(A)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the least singular value of <jats:italic>A</jats:italic> and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline4.png\" /> <jats:tex-math> $C,c>0 $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> depend only on the distribution of the entries of <jats:italic>A</jats:italic>. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline5.png\" /> <jats:tex-math> $A_{i,j}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Along the way, we prove that the probability that <jats:italic>A</jats:italic> has a repeated eigenvalue is <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S205050862300029X_inline6.png\" /> <jats:tex-math> $e^{-\\Omega (n)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, thus confirming a conjecture of Nguyen, Tao and Vu [<jats:italic>Probab. Theory Relat. Fields</jats:italic> 167 (2017), 777–816].","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.29","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let A be an $n \times n$ symmetric matrix with $(A_{i,j})_{i\leqslant j}$ independent and identically distributed according to a subgaussian distribution. We show that $$ \begin{align*}\mathbb{P}(\sigma_{\min}(A) \leqslant \varepsilon n^{-1/2} ) \leqslant C \varepsilon + e^{-cn},\end{align*} $$ where $\sigma _{\min }(A)$ denotes the least singular value of A and the constants $C,c>0 $ depend only on the distribution of the entries of A. This result confirms the folklore conjecture on the lower tail of the least singular value of such matrices and is best possible up to the dependence of the constants on the distribution of $A_{i,j}$ . Along the way, we prove that the probability that A has a repeated eigenvalue is $e^{-\Omega (n)}$ , thus confirming a conjecture of Nguyen, Tao and Vu [Probab. Theory Relat. Fields 167 (2017), 777–816].
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.