On two cycles of consecutive even lengths

IF 0.9 3区 数学 Q2 MATHEMATICS
Jun Gao, Binlong Li, Jie Ma, Tianying Xie
{"title":"On two cycles of consecutive even lengths","authors":"Jun Gao,&nbsp;Binlong Li,&nbsp;Jie Ma,&nbsp;Tianying Xie","doi":"10.1002/jgt.23074","DOIUrl":null,"url":null,"abstract":"<p>Bondy and Vince showed that every graph with minimum degree at least three contains two cycles of lengths differing by one or two. We prove the following average degree counterpart that every <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with at least <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>5</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\frac{5}{2}(n-1)$</annotation>\n </semantics></math> edges, unless <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n \n <mo>|</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $4|(n-1)$</annotation>\n </semantics></math> and every block of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a clique <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mn>5</mn>\n </msub>\n </mrow>\n <annotation> ${K}_{5}$</annotation>\n </semantics></math>, contains two cycles of consecutive even lengths. Our proof is mainly based on structural analysis, and a crucial step which may be of independent interest shows that the same conclusion holds for every 3-connected graph with at least six vertices. This solves a special case of a conjecture of Verstraëte. The quantitative bound is tight and also provides the optimal extremal number for cycles of length two modulo four.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"225-238"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23074","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bondy and Vince showed that every graph with minimum degree at least three contains two cycles of lengths differing by one or two. We prove the following average degree counterpart that every n $n$ -vertex graph G $G$ with at least 5 2 ( n 1 ) $\frac{5}{2}(n-1)$ edges, unless 4 | ( n 1 ) $4|(n-1)$ and every block of G $G$ is a clique K 5 ${K}_{5}$ , contains two cycles of consecutive even lengths. Our proof is mainly based on structural analysis, and a crucial step which may be of independent interest shows that the same conclusion holds for every 3-connected graph with at least six vertices. This solves a special case of a conjecture of Verstraëte. The quantitative bound is tight and also provides the optimal extremal number for cycles of length two modulo four.

在两个连续偶数长度的周期上
邦迪和文斯证明了每个最小度数至少为 3 的图都包含两个长度相差 1 或 2 的循环。我们证明了以下平均度对应关系:除非 4|(n-1)$4|(n-1)$且 G$G$ 的每个块都是一个小群 K5${K}_{5}$,否则每个至少有 52(n-1)$\frac{5}{2}(n-1)$ 边的 n$n$顶点图 G$G$ 都包含两个连续偶数长度的循环。我们的证明主要基于结构分析,其中一个关键步骤可能会引起独立的兴趣,它表明对于每一个至少有六个顶点的三连图,同样的结论都成立。这解决了 Verstraëte 猜想的一个特例。这个定量约束非常严密,而且还提供了长度为 2 modulo 4 的循环的最佳极值数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信