Xingxing Chen, Qingfeng Cheng, Weidong Yang, Xiangyang Luo
{"title":"An anonymous authentication and secure data transmission scheme for the Internet of Things based on blockchain","authors":"Xingxing Chen, Qingfeng Cheng, Weidong Yang, Xiangyang Luo","doi":"10.1007/s11704-023-2595-x","DOIUrl":null,"url":null,"abstract":"<p>With the widespread use of network infrastructures such as 5G and low-power wide-area networks, a large number of the Internet of Things (IoT) device nodes are connected to the network, generating massive amounts of data. Therefore, it is a great challenge to achieve anonymous authentication of IoT nodes and secure data transmission. At present, blockchain technology is widely used in authentication and s data storage due to its decentralization and immutability. Recently, Fan et al. proposed a secure and efficient blockchain-based IoT authentication and data sharing scheme. We studied it as one of the state-of-the-art protocols and found that this scheme does not consider the resistance to ephemeral secret compromise attacks and the anonymity of IoT nodes. To overcome these security flaws, this paper proposes an enhanced authentication and data transmission scheme, which is verified by formal security proofs and informal security analysis. Furthermore, Scyther is applied to prove the security of the proposed scheme. Moreover, it is demonstrated that the proposed scheme achieves better performance in terms of communication and computational cost compared to other related schemes.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"4 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2595-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the widespread use of network infrastructures such as 5G and low-power wide-area networks, a large number of the Internet of Things (IoT) device nodes are connected to the network, generating massive amounts of data. Therefore, it is a great challenge to achieve anonymous authentication of IoT nodes and secure data transmission. At present, blockchain technology is widely used in authentication and s data storage due to its decentralization and immutability. Recently, Fan et al. proposed a secure and efficient blockchain-based IoT authentication and data sharing scheme. We studied it as one of the state-of-the-art protocols and found that this scheme does not consider the resistance to ephemeral secret compromise attacks and the anonymity of IoT nodes. To overcome these security flaws, this paper proposes an enhanced authentication and data transmission scheme, which is verified by formal security proofs and informal security analysis. Furthermore, Scyther is applied to prove the security of the proposed scheme. Moreover, it is demonstrated that the proposed scheme achieves better performance in terms of communication and computational cost compared to other related schemes.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.