{"title":"Decoupled deep hough voting for point cloud registration","authors":"Mingzhi Yuan, Kexue Fu, Zhihao Li, Manning Wang","doi":"10.1007/s11704-023-2471-8","DOIUrl":null,"url":null,"abstract":"<p>Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration. Recently, a series of studies have attempted to combine traditional robust model fitting with deep learning. Among them, DHVR proposed a hough voting-based method, achieving new state-of-the-art performance. However, we find voting on rotation and translation simultaneously hinders achieving better performance. Therefore, we proposed a new hough voting-based method, which decouples rotation and translation space. Specifically, we first utilize hough voting and a neural network to estimate rotation. Then based on good initialization on rotation, we can easily obtain accurate rigid transformation. Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods. We further demonstrate the generalization of our method by experimenting on KITTI dataset.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"17 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2471-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration. Recently, a series of studies have attempted to combine traditional robust model fitting with deep learning. Among them, DHVR proposed a hough voting-based method, achieving new state-of-the-art performance. However, we find voting on rotation and translation simultaneously hinders achieving better performance. Therefore, we proposed a new hough voting-based method, which decouples rotation and translation space. Specifically, we first utilize hough voting and a neural network to estimate rotation. Then based on good initialization on rotation, we can easily obtain accurate rigid transformation. Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods. We further demonstrate the generalization of our method by experimenting on KITTI dataset.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.