Decoupled deep hough voting for point cloud registration

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mingzhi Yuan, Kexue Fu, Zhihao Li, Manning Wang
{"title":"Decoupled deep hough voting for point cloud registration","authors":"Mingzhi Yuan, Kexue Fu, Zhihao Li, Manning Wang","doi":"10.1007/s11704-023-2471-8","DOIUrl":null,"url":null,"abstract":"<p>Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration. Recently, a series of studies have attempted to combine traditional robust model fitting with deep learning. Among them, DHVR proposed a hough voting-based method, achieving new state-of-the-art performance. However, we find voting on rotation and translation simultaneously hinders achieving better performance. Therefore, we proposed a new hough voting-based method, which decouples rotation and translation space. Specifically, we first utilize hough voting and a neural network to estimate rotation. Then based on good initialization on rotation, we can easily obtain accurate rigid transformation. Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods. We further demonstrate the generalization of our method by experimenting on KITTI dataset.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"17 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2471-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating rigid transformation using noisy correspondences is critical to feature-based point cloud registration. Recently, a series of studies have attempted to combine traditional robust model fitting with deep learning. Among them, DHVR proposed a hough voting-based method, achieving new state-of-the-art performance. However, we find voting on rotation and translation simultaneously hinders achieving better performance. Therefore, we proposed a new hough voting-based method, which decouples rotation and translation space. Specifically, we first utilize hough voting and a neural network to estimate rotation. Then based on good initialization on rotation, we can easily obtain accurate rigid transformation. Extensive experiments on 3DMatch and 3DLoMatch datasets show that our method achieves comparable performances over the state-of-the-art methods. We further demonstrate the generalization of our method by experimenting on KITTI dataset.

用于点云注册的解耦深度霍夫表决
利用噪声对应关系估计刚性变换对于基于特征的点云配准至关重要。最近,一系列研究尝试将传统的鲁棒模型拟合与深度学习相结合。其中,DHVR 提出了一种基于霍夫投票的方法,取得了新的先进性能。然而,我们发现同时对旋转和平移进行投票会阻碍取得更好的性能。因此,我们提出了一种新的基于 hough 投票的方法,将旋转和平移空间分离开来。具体来说,我们首先利用 Hough 投票和神经网络来估计旋转。然后,基于良好的旋转初始化,我们可以轻松获得精确的刚性变换。在 3DMatch 和 3DLoMatch 数据集上进行的大量实验表明,我们的方法取得了与最先进方法相当的性能。通过在 KITTI 数据集上的实验,我们进一步证明了我们方法的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信