EvolveKG: a general framework to learn evolving knowledge graphs

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiaqi Liu, Zhiwen Yu, Bin Guo, Cheng Deng, Luoyi Fu, Xinbing Wang, Chenghu Zhou
{"title":"EvolveKG: a general framework to learn evolving knowledge graphs","authors":"Jiaqi Liu, Zhiwen Yu, Bin Guo, Cheng Deng, Luoyi Fu, Xinbing Wang, Chenghu Zhou","doi":"10.1007/s11704-022-2467-9","DOIUrl":null,"url":null,"abstract":"<p>A great many practical applications have observed knowledge evolution, i.e., continuous born of new knowledge, with its formation influenced by the structure of historical knowledge. This observation gives rise to evolving knowledge graphs whose structure temporally grows over time. However, both the modal characterization and the algorithmic implementation of evolving knowledge graphs remain unexplored. To this end, we propose EvolveKG–a general framework that enables algorithms in the static knowledge graphs to learn the evolving ones. EvolveKG quantifies the influence of a historical fact on a current one, called the effectiveness of the fact, and makes knowledge prediction by leveraging all the cross-time knowledge interaction. The novelty of EvolveKG lies in Derivative Graph–a weighted snapshot of evolution at a certain time. Particularly, each weight quantifies knowledge effectiveness through a temporarily decaying function of consistency and attenuation, two proposed factors depicting whether or not the effectiveness of a fact fades away with time. Besides, considering both knowledge creation and loss, we obtain higher prediction accuracy when the effectiveness of all the facts increases with time or remains unchanged. Under four real datasets, the superiority of EvolveKG is confirmed in prediction accuracy.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"93 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-022-2467-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A great many practical applications have observed knowledge evolution, i.e., continuous born of new knowledge, with its formation influenced by the structure of historical knowledge. This observation gives rise to evolving knowledge graphs whose structure temporally grows over time. However, both the modal characterization and the algorithmic implementation of evolving knowledge graphs remain unexplored. To this end, we propose EvolveKG–a general framework that enables algorithms in the static knowledge graphs to learn the evolving ones. EvolveKG quantifies the influence of a historical fact on a current one, called the effectiveness of the fact, and makes knowledge prediction by leveraging all the cross-time knowledge interaction. The novelty of EvolveKG lies in Derivative Graph–a weighted snapshot of evolution at a certain time. Particularly, each weight quantifies knowledge effectiveness through a temporarily decaying function of consistency and attenuation, two proposed factors depicting whether or not the effectiveness of a fact fades away with time. Besides, considering both knowledge creation and loss, we obtain higher prediction accuracy when the effectiveness of all the facts increases with time or remains unchanged. Under four real datasets, the superiority of EvolveKG is confirmed in prediction accuracy.

EvolveKG:学习演化知识图谱的通用框架
许多实际应用都观察到了知识的演变,即新知识的不断诞生,其形成受到历史知识结构的影响。这种观察结果催生了知识图谱的演化,其结构随着时间的推移而不断变化。然而,演化知识图谱的模态特征描述和算法实现仍有待探索。为此,我们提出了 EvolveKG--一个通用框架,使静态知识图谱中的算法能够学习不断演化的知识图谱。EvolveKG 量化了历史事实对当前事实的影响(称为事实的有效性),并利用所有跨时间知识交互进行知识预测。EvolveKG 的新颖之处在于 "衍生图"(Derivative Graph)--一个特定时间的加权演化快照。特别是,每个权重通过一致性和衰减的暂时衰减函数来量化知识的有效性。此外,考虑到知识的创造和流失,当所有事实的有效性随时间增加或保持不变时,我们会获得更高的预测准确率。在四个真实数据集下,EvolveKG 在预测准确率方面的优势得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信