Development and validation of a nomogram model for individualizing the risk of osteopenia in abdominal obesity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gangjie Wu , Chun Lei , Xiaobing Gong
{"title":"Development and validation of a nomogram model for individualizing the risk of osteopenia in abdominal obesity","authors":"Gangjie Wu ,&nbsp;Chun Lei ,&nbsp;Xiaobing Gong","doi":"10.1016/j.jocd.2024.101469","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Objective:</strong> This study was aimed to create and validate a risk prediction model for the incidence of osteopenia in individuals with abdominal obesity.</p><p><strong>Methods:</strong> Survey data from the National Health and Nutrition Examination Survey (NHANES) database for the years 2013–2014 and 2017–2018 was selected and included those with waist circumferences ≥102 m in men and ≥88 cm in women, which were defined as abdominal obesity. A multifactor logistic regression model was constructed using LASSO regression analysis to identify the best predictor variables, followed by the creation of a nomogram model. The model was then verified and evaluated using the consistency index (C-index), area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA).</p><p><strong>Results</strong> Screening based on LASSO regression analysis revealed that sex, age, race, body mass index (BMI), alkaline phosphatase (ALP) and Triglycerides (TG) were significant predictors of osteopenia development in individuals with abdominal obesity (P &lt; 0.05). These six variables were included in the nomogram. In the training and validation sets, the C indices were 0.714 (95 % CI: 0.689–0.738) and 0.701 (95 % CI: 0.662–0.739), respectively, with corresponding AUCs of 0.714 and 0.701. The nomogram model exhibited good consistency with actual observations, as demonstrated by the calibration curve. The DCA nomogram showed that early intervention for at-risk populations has a net positive impact.</p><p><strong>Conclusion:</strong> Sex, age, race, BMI, ALP and TG are predictive factors for osteopenia in individuals with abdominal obesity. The constructed nomogram model can be utilized to predict the clinical risk of osteopenia in the population with abdominal obesity.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094695024000040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study was aimed to create and validate a risk prediction model for the incidence of osteopenia in individuals with abdominal obesity.

Methods: Survey data from the National Health and Nutrition Examination Survey (NHANES) database for the years 2013–2014 and 2017–2018 was selected and included those with waist circumferences ≥102 m in men and ≥88 cm in women, which were defined as abdominal obesity. A multifactor logistic regression model was constructed using LASSO regression analysis to identify the best predictor variables, followed by the creation of a nomogram model. The model was then verified and evaluated using the consistency index (C-index), area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA).

Results Screening based on LASSO regression analysis revealed that sex, age, race, body mass index (BMI), alkaline phosphatase (ALP) and Triglycerides (TG) were significant predictors of osteopenia development in individuals with abdominal obesity (P < 0.05). These six variables were included in the nomogram. In the training and validation sets, the C indices were 0.714 (95 % CI: 0.689–0.738) and 0.701 (95 % CI: 0.662–0.739), respectively, with corresponding AUCs of 0.714 and 0.701. The nomogram model exhibited good consistency with actual observations, as demonstrated by the calibration curve. The DCA nomogram showed that early intervention for at-risk populations has a net positive impact.

Conclusion: Sex, age, race, BMI, ALP and TG are predictive factors for osteopenia in individuals with abdominal obesity. The constructed nomogram model can be utilized to predict the clinical risk of osteopenia in the population with abdominal obesity.

开发并验证用于个体化腹型肥胖症骨质疏松症风险的提名图模型
方法选取2013-2014年和2017-2018年美国国家健康与营养调查(NHANES)数据库中的调查数据,将男性腰围≥102米、女性腰围≥88厘米者定义为腹型肥胖。利用 LASSO 回归分析法构建了一个多因素逻辑回归模型,以确定最佳预测变量,随后创建了一个提名图模型。结果基于 LASSO 回归分析的筛选显示,性别、年龄、种族、体重指数 (BMI)、碱性磷酸酶 (ALP) 和甘油三酯 (TG) 是腹型肥胖症患者骨质疏松症发生的重要预测因素(P<0.05)。这六个变量被纳入了提名图。在训练集和验证集中,C 指数分别为 0.714(95% CI:0.689-0.738)和 0.701(95% CI:0.662-0.739),相应的 AUC 分别为 0.714 和 0.701。正如校准曲线所示,提名图模型与实际观察结果具有良好的一致性。结论性别、年龄、种族、体重指数(BMI)、谷丙转氨酶(ALP)和谷草转氨酶(TG)是腹型肥胖患者骨质疏松的预测因素。所构建的提名图模型可用于预测腹型肥胖人群骨质增生的临床风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信