Muhammad Qasim , Mirella López Picazo , Carlos Ruiz Wills , Jérôme Noailly , Silvana Di Gregorio , Luis Miguel Del Río Barquero , Jorge Malouf Sierra , Ludovic Humbert
{"title":"3D-DXA based finite element modelling for femur strength prediction: evaluation against QCT.","authors":"Muhammad Qasim , Mirella López Picazo , Carlos Ruiz Wills , Jérôme Noailly , Silvana Di Gregorio , Luis Miguel Del Río Barquero , Jorge Malouf Sierra , Ludovic Humbert","doi":"10.1016/j.jocd.2024.101471","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Osteoporosis is characterised by the loss of bone density resulting in an increased risk of </span>fragility fractures. The clinical gold standard for diagnosing osteoporosis is based on the areal bone mineral density (aBMD) used as a surrogate for bone strength, in combination with clinical risk factors. Finite element (FE) analyses based on </span>quantitative computed tomography<span> (QCT) have been shown to estimate bone strength better than aBMD. However, their application in the osteoporosis clinics is limited due to exposure of patients to increased X-rays radiation dose. Statistical modelling<span> methods (3D-DXA) enabling the estimation of 3D femur shape and volumetric bone density from dual energy X-ray absorptiometry (DXA) scan have been shown to improve osteoporosis management. The current study used 3D-DXA based FE analyses to estimate femur strength from the routine clinical DXA scans and compared its results against 151 QCT based FE analyses, in a clinical cohort of 157 subjects. The </span></span></span>linear regression between the femur strength predicted by QCT-FE and 3D-DXA-FE models correlated highly (coefficient of determination R</span><sup>2</sup> = 0.86) with a root mean square error (RMSE) of 397 N. In conclusion, the current study presented a 3D-DXA-FE modelling tool providing accurate femur strength estimates noninvasively, compared to QCT-FE models.</p></div>","PeriodicalId":50240,"journal":{"name":"Journal of Clinical Densitometry","volume":"27 2","pages":"Article 101471"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Densitometry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094695024000064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is characterised by the loss of bone density resulting in an increased risk of fragility fractures. The clinical gold standard for diagnosing osteoporosis is based on the areal bone mineral density (aBMD) used as a surrogate for bone strength, in combination with clinical risk factors. Finite element (FE) analyses based on quantitative computed tomography (QCT) have been shown to estimate bone strength better than aBMD. However, their application in the osteoporosis clinics is limited due to exposure of patients to increased X-rays radiation dose. Statistical modelling methods (3D-DXA) enabling the estimation of 3D femur shape and volumetric bone density from dual energy X-ray absorptiometry (DXA) scan have been shown to improve osteoporosis management. The current study used 3D-DXA based FE analyses to estimate femur strength from the routine clinical DXA scans and compared its results against 151 QCT based FE analyses, in a clinical cohort of 157 subjects. The linear regression between the femur strength predicted by QCT-FE and 3D-DXA-FE models correlated highly (coefficient of determination R2 = 0.86) with a root mean square error (RMSE) of 397 N. In conclusion, the current study presented a 3D-DXA-FE modelling tool providing accurate femur strength estimates noninvasively, compared to QCT-FE models.
期刊介绍:
The Journal is committed to serving ISCD''s mission - the education of heterogenous physician specialties and technologists who are involved in the clinical assessment of skeletal health. The focus of JCD is bone mass measurement, including epidemiology of bone mass, how drugs and diseases alter bone mass, new techniques and quality assurance in bone mass imaging technologies, and bone mass health/economics.
Combining high quality research and review articles with sound, practice-oriented advice, JCD meets the diverse diagnostic and management needs of radiologists, endocrinologists, nephrologists, rheumatologists, gynecologists, family physicians, internists, and technologists whose patients require diagnostic clinical densitometry for therapeutic management.