{"title":"Continuous CM-regularity and generic vanishing","authors":"Debaditya Raychaudhury","doi":"10.1515/advgeom-2023-0028","DOIUrl":null,"url":null,"abstract":"We study the continuous CM-regularity of torsion-free coherent sheaves on polarized irregular smooth projective varieties (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)), and its relation with the theory of generic vanishing. This continuous variant of the Castelnuovo–Mumford regularity was introduced by Mustopa, and he raised the question whether a continuously 1-regular such sheaf F is GV. Here we answer the question in the affirmative for many pairs (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)) which includes the case of any polarized abelian variety. Moreover, for these pairs, we show that if F is continuously <jats:italic>k</jats:italic>-regular for some positive integer <jats:italic>k</jats:italic> ≤ dim <jats:italic>X</jats:italic>, then F is a GV<jats:sub>−(<jats:italic>k</jats:italic>−1)</jats:sub> sheaf. Further, we extend the notion of continuous CM-regularity to a real valued function on the ℚ-twisted bundles on polarized abelian varieties (<jats:italic>X</jats:italic>, O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1)), and we show that this function can be extended to a continuous function on <jats:italic>N</jats:italic> <jats:sup>1</jats:sup>(<jats:italic>X</jats:italic>)<jats:sub>ℝ</jats:sub>. We also provide syzygetic consequences of our results for O<jats:sub>ℙ(E)</jats:sub>(1) on ℙ(ɛ) associated to a 0-regular bundle ɛ on polarized abelian varieties. In particular, we show that O<jats:sub>ℙ(E)</jats:sub>(1) satisfies the <jats:italic>N<jats:sub>p</jats:sub> </jats:italic> property if the base-point freeness threshold of the class of O<jats:italic> <jats:sub>X</jats:sub> </jats:italic>(1) in <jats:italic>N</jats:italic> <jats:sup>1</jats:sup>(<jats:italic>X</jats:italic>) is less than 1/(<jats:italic>p</jats:italic> + 2). This result is obtained using a theorem in the Appendix A written by Atsushi Ito.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the continuous CM-regularity of torsion-free coherent sheaves on polarized irregular smooth projective varieties (X, OX(1)), and its relation with the theory of generic vanishing. This continuous variant of the Castelnuovo–Mumford regularity was introduced by Mustopa, and he raised the question whether a continuously 1-regular such sheaf F is GV. Here we answer the question in the affirmative for many pairs (X, OX(1)) which includes the case of any polarized abelian variety. Moreover, for these pairs, we show that if F is continuously k-regular for some positive integer k ≤ dim X, then F is a GV−(k−1) sheaf. Further, we extend the notion of continuous CM-regularity to a real valued function on the ℚ-twisted bundles on polarized abelian varieties (X, OX(1)), and we show that this function can be extended to a continuous function on N1(X)ℝ. We also provide syzygetic consequences of our results for Oℙ(E)(1) on ℙ(ɛ) associated to a 0-regular bundle ɛ on polarized abelian varieties. In particular, we show that Oℙ(E)(1) satisfies the Np property if the base-point freeness threshold of the class of OX(1) in N1(X) is less than 1/(p + 2). This result is obtained using a theorem in the Appendix A written by Atsushi Ito.
我们研究极化不规则光滑投影变项 (X, O X (1)) 上无扭相干剪切的连续 CM 正则性及其与泛型消失理论的关系。这种卡斯特诺沃-芒福德正则性的连续变体是由穆斯托帕引入的,他提出了这样一个问题:连续 1-regular 的剪切 F 是否是 GV?在这里,我们对许多对(X, O X (1))给出了肯定的回答,其中包括任何极化无性杂交的情况。此外,对于这些对子,我们证明了如果 F 对于某个正整数 k ≤ dim X 是连续 k-regular 的,那么 F 就是 GV-(k-1) sheaf。此外,我们将连续 CM-regularity 的概念扩展到极化无性变体 (X, O X (1)) 上的ℚ扭曲束上的实值函数,并证明该函数可以扩展为 N 1(X)ℝ 上的连续函数。我们还提供了与极化无常变体上的 0 规则束ɛ相关联的ℙ(ɛ) 上 Oℙ(E)(1) 的协同结果。我们特别指出,如果 N 1(X) 中 O X (1) 类的基点自由阈值小于 1/(p + 2),则 Oℙ(E)(1) 满足 Np 特性。这一结果是通过伊藤敦撰写的附录 A 中的一个定理得到的。
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.