Anisotropic area-preserving nonlocal flow for closed convex plane curves

IF 0.5 4区 数学 Q3 MATHEMATICS
Tianyu Zhao, Yunlong Yang, Yueyue Mao, Jianbo Fang
{"title":"Anisotropic area-preserving nonlocal flow for closed convex plane curves","authors":"Tianyu Zhao, Yunlong Yang, Yueyue Mao, Jianbo Fang","doi":"10.1515/advgeom-2023-0025","DOIUrl":null,"url":null,"abstract":"We consider an anisotropic area-preserving nonlocal flow for closed convex plane curves, which is a generalization of the model introduced by Pan and Yang (J. Differential Equations 266 (2019), 3764–3786) when <jats:italic>τ</jats:italic> = 1. Under this flow, the evolving curve maintains its convexity and converges to a homothety of a smooth symmetric strictly convex plane curve in the <jats:italic>C</jats:italic> <jats:sup>∞</jats:sup> sense. The analysis of the asymptotic behavior of this flow implies the possibility of deforming one curve into another within the framework of Minkowski geometry.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"3 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an anisotropic area-preserving nonlocal flow for closed convex plane curves, which is a generalization of the model introduced by Pan and Yang (J. Differential Equations 266 (2019), 3764–3786) when τ = 1. Under this flow, the evolving curve maintains its convexity and converges to a homothety of a smooth symmetric strictly convex plane curve in the C sense. The analysis of the asymptotic behavior of this flow implies the possibility of deforming one curve into another within the framework of Minkowski geometry.
封闭凸平面曲线的各向异性面积保留非局部流动
我们考虑了封闭凸平面曲线的各向异性面积保留非局部流,它是潘、杨(《微分方程学报》,266 (2019),3764-3786)在τ = 1时引入的模型的广义化。在此流动条件下,演化曲线保持其凸性,并收敛于 C ∞ 意义上的光滑对称严格凸平面曲线的同调。对这种流的渐近行为的分析意味着在闵科夫斯基几何框架内将一条曲线变形为另一条曲线的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信