Duality related with key varieties of ℚ-Fano threefolds constructed from projective bundles

IF 0.5 4区 数学 Q3 MATHEMATICS
Hiromichi Takagi
{"title":"Duality related with key varieties of ℚ-Fano threefolds constructed from projective bundles","authors":"Hiromichi Takagi","doi":"10.1515/advgeom-2023-0029","DOIUrl":null,"url":null,"abstract":"In our previous paper [31], we show that all primeℚ-Fano 3-folds <jats:italic>X</jats:italic> with only 1/2(1, 1, 1)-singularities in certain 5 classes can be embedded as linear sections into bigger dimensionalℚ-Fano varieties called key varieties; each key variety is constructed from data of the Sarkisov link starting from the blow-up at one 1/2(1, 1, 1)-singularity of <jats:italic>X</jats:italic>. In this paper, we introduce varieties associated with the key varieties which are dual in a certain sense. As an application, we interpret a fundamental part of the Sarkisov link for each <jats:italic>X</jats:italic> as a linear section of the dual variety. In a natural context describing the variety dual to the key variety of <jats:italic>X</jats:italic> of genus 5 with one 1/2(1, 1, 1)-singularity, we also characterize a general canonical curve of genus 9 with a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2023-0029_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>g</m:mi> <m:mrow> <m:mn>7</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>.</m:mo> </m:math> <jats:tex-math>$g_{7}^{2}.$</jats:tex-math> </jats:alternatives> </jats:inline-formula>","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In our previous paper [31], we show that all primeℚ-Fano 3-folds X with only 1/2(1, 1, 1)-singularities in certain 5 classes can be embedded as linear sections into bigger dimensionalℚ-Fano varieties called key varieties; each key variety is constructed from data of the Sarkisov link starting from the blow-up at one 1/2(1, 1, 1)-singularity of X. In this paper, we introduce varieties associated with the key varieties which are dual in a certain sense. As an application, we interpret a fundamental part of the Sarkisov link for each X as a linear section of the dual variety. In a natural context describing the variety dual to the key variety of X of genus 5 with one 1/2(1, 1, 1)-singularity, we also characterize a general canonical curve of genus 9 with a g 7 2 . $g_{7}^{2}.$
与投影束构建的ℚ-Fano 三折的关键变种有关的对偶性
在我们之前的论文[31]中,我们证明了所有素ℚ-法诺 3 折叠 X 在某些 5 类中只有 1/2(1, 1, 1)奇异性,都可以作为线性部分嵌入到更大维度的ℚ-法诺变种中,称为关键变种;每个关键变种都是从 X 的一个 1/2(1, 1, 1)奇异性处的炸开开始的萨基索夫链的数据构造的。作为一种应用,我们将每个 X 的萨基索夫链的基本部分解释为对偶变种的线性部分。在描述与具有一个 1/2(1, 1, 1)奇异性的 X 属 5 的关键变种对偶的自然背景下,我们还描述了具有一个 g 7 2 的属 9 的一般典型曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信