{"title":"Duality related with key varieties of ℚ-Fano threefolds constructed from projective bundles","authors":"Hiromichi Takagi","doi":"10.1515/advgeom-2023-0029","DOIUrl":null,"url":null,"abstract":"In our previous paper [31], we show that all primeℚ-Fano 3-folds <jats:italic>X</jats:italic> with only 1/2(1, 1, 1)-singularities in certain 5 classes can be embedded as linear sections into bigger dimensionalℚ-Fano varieties called key varieties; each key variety is constructed from data of the Sarkisov link starting from the blow-up at one 1/2(1, 1, 1)-singularity of <jats:italic>X</jats:italic>. In this paper, we introduce varieties associated with the key varieties which are dual in a certain sense. As an application, we interpret a fundamental part of the Sarkisov link for each <jats:italic>X</jats:italic> as a linear section of the dual variety. In a natural context describing the variety dual to the key variety of <jats:italic>X</jats:italic> of genus 5 with one 1/2(1, 1, 1)-singularity, we also characterize a general canonical curve of genus 9 with a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_advgeom-2023-0029_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mi>g</m:mi> <m:mrow> <m:mn>7</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>.</m:mo> </m:math> <jats:tex-math>$g_{7}^{2}.$</jats:tex-math> </jats:alternatives> </jats:inline-formula>","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In our previous paper [31], we show that all primeℚ-Fano 3-folds X with only 1/2(1, 1, 1)-singularities in certain 5 classes can be embedded as linear sections into bigger dimensionalℚ-Fano varieties called key varieties; each key variety is constructed from data of the Sarkisov link starting from the blow-up at one 1/2(1, 1, 1)-singularity of X. In this paper, we introduce varieties associated with the key varieties which are dual in a certain sense. As an application, we interpret a fundamental part of the Sarkisov link for each X as a linear section of the dual variety. In a natural context describing the variety dual to the key variety of X of genus 5 with one 1/2(1, 1, 1)-singularity, we also characterize a general canonical curve of genus 9 with a g72.$g_{7}^{2}.$
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.