Quotient spaces of K3 surfaces by non-symplectic involutions fixing a curve of genus 8 or more

IF 0.5 4区 数学 Q3 MATHEMATICS
Taro Hayashi
{"title":"Quotient spaces of K3 surfaces by non-symplectic involutions fixing a curve of genus 8 or more","authors":"Taro Hayashi","doi":"10.1515/advgeom-2023-0022","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>X</jats:italic> be a <jats:italic>K</jats:italic>3 surface and let <jats:italic>g</jats:italic> be a non-symplectic involution of <jats:italic>X</jats:italic> such that the fixed points set contains a curve of genus 8 or more. In this paper, we show that the quotient space <jats:italic>X</jats:italic>/〈<jats:italic>g</jats:italic>〉 is determined by the fixed points set and the action of <jats:italic>g</jats:italic> on rational curves on <jats:italic>X</jats:italic>.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"31 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a K3 surface and let g be a non-symplectic involution of X such that the fixed points set contains a curve of genus 8 or more. In this paper, we show that the quotient space X/〈g〉 is determined by the fixed points set and the action of g on rational curves on X.
固定 8 或更多属曲线的非交错渐开线的 K3 曲面的商空间
设 X 是一个 K3 曲面,设 g 是 X 的一个非交错内卷,使得定点集包含一条属 8 或以上的曲线。在本文中,我们将证明商空间 X/〈g〉是由定点集和 g 对 X 上有理曲线的作用决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信