Jian Lin , Yanqi Lou , Zhenkai Sun , Dongliang Pan , Lei Lei , Yang Song , Changjiang Huang , Jiangfei Chen
{"title":"DDT and titanium dioxide nanoparticle coexposure induced neurobehavioral deficits in zebrafish","authors":"Jian Lin , Yanqi Lou , Zhenkai Sun , Dongliang Pan , Lei Lei , Yang Song , Changjiang Huang , Jiangfei Chen","doi":"10.1016/j.ntt.2024.107323","DOIUrl":null,"url":null,"abstract":"<div><p><span>Both dichlorodiphenyltrichloroethane<span> (DDT) and titanium dioxide nanoparticle (TiO</span></span><sub>2</sub> NP) have worldwide-scale commercial applications, resulting in their co-pollution in the ecosystems and posing combined health risks. However, there is a lack of toxicity studies for the interactions of DDT and TiO<sub>2</sub><span> NP in the environmental relevant concentrations. In this study, we characterized the coexposures using a zebrafish waterborne exposure approach and evaluated the neurotoxicity response of the treated embryos or adults. Our results showed that DDT/TiO</span><sub>2</sub> NP coexposure enhanced the DDT accumulation in vivo and increased the larval locomotor. The chronic DDT/TiO<sub>2</sub> NP coexposure did not affect the overall survival rate, sex ratio and growth. However, DDT/TiO<sub>2</sub><span><span> NP coexposure severely affected the adult locomotor activity, social contact, shoaling and aggressive behaviors<span> compared to single treatment groups or controls. These adult behavioral deficits were accompanied by changes in neurotransmitter<span> acetylcholine (ACH) level in the brain and muscle tissues, as well as </span></span></span>neural development genes expression activation of growth-associated protein 43 (</span><em>gap43</em><span>) and synaptic vesicle<span> glycoprotein 2 (</span></span><em>sv2</em>) in the brain. The significantly increased ACH level and the activated neural genes expression in the DDT/TiO<sub>2</sub> NP co-exposed fish may account for the observed hyperactivity and social deficits.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"102 ","pages":"Article 107323"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036224000059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Both dichlorodiphenyltrichloroethane (DDT) and titanium dioxide nanoparticle (TiO2 NP) have worldwide-scale commercial applications, resulting in their co-pollution in the ecosystems and posing combined health risks. However, there is a lack of toxicity studies for the interactions of DDT and TiO2 NP in the environmental relevant concentrations. In this study, we characterized the coexposures using a zebrafish waterborne exposure approach and evaluated the neurotoxicity response of the treated embryos or adults. Our results showed that DDT/TiO2 NP coexposure enhanced the DDT accumulation in vivo and increased the larval locomotor. The chronic DDT/TiO2 NP coexposure did not affect the overall survival rate, sex ratio and growth. However, DDT/TiO2 NP coexposure severely affected the adult locomotor activity, social contact, shoaling and aggressive behaviors compared to single treatment groups or controls. These adult behavioral deficits were accompanied by changes in neurotransmitter acetylcholine (ACH) level in the brain and muscle tissues, as well as neural development genes expression activation of growth-associated protein 43 (gap43) and synaptic vesicle glycoprotein 2 (sv2) in the brain. The significantly increased ACH level and the activated neural genes expression in the DDT/TiO2 NP co-exposed fish may account for the observed hyperactivity and social deficits.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.