N. Rivera-Rincóon, U.H. Altindag, R. Amin, R.M. Graze, A.G. Appel, L.S. Stevison
{"title":"“A comparison of thermal stress response between Drosophila melanogaster and Drosophila pseudoobscura reveals differences between species and sexes”","authors":"N. Rivera-Rincóon, U.H. Altindag, R. Amin, R.M. Graze, A.G. Appel, L.S. Stevison","doi":"10.1016/j.jinsphys.2024.104616","DOIUrl":null,"url":null,"abstract":"<div><p>The environment is changing faster than anticipated due to climate change, making species more vulnerable to its impacts. The level of vulnerability of species is influenced by factors such as the degree and duration of exposure, as well as the physiological sensitivity of organisms to changes in their environments, which has been shown to vary among species, populations, and individuals. Here, we compared physiological changes in fecundity, critical thermal<!--> <!-->maximum (CT<sub>max</sub>), respiratory quotient (RQ), and DNA damage in ovaries in response to temperature stress in two species of fruit fly, <em>Drosophila melanogaster</em> (25 vs. 29.5 °C) and <em>Drosophila pseudoobscura</em> (20.5 vs. 25 °C). The fecundity of <em>D. melanogaster</em> was more affected by high temperatures when exposed during egg through adult development, while <em>D. pseudoobscura</em> was most significantly affected when exposed to high temperatures exclusively during egg through pupal development. Additionally, <em>D. melanogaster</em> males exhibited a decrease of CT<sub>max</sub> under high temperatures, while females showed an increase of CT<sub>max</sub> when exposed to high temperatures during egg through adult development. while <em>D. pseudoobscura</em> females and males showed an increased CT<sub>max</sub> only when reared at high temperatures during egg through pupae development. Moreover, both species showed an acceleration in oogenesis and an increase in apoptosis due to heat stress. These changes can likely be attributed to key differences in the geographic range, thermal range, development time, and other different factors between these two systems. Through this comparison of variation in physiology and developmental response to thermal stress, we found important differences between species and sexes that suggest future work needs to account for these factors separately in understanding the effects of constant increased temperatures.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"153 ","pages":"Article 104616"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022191024000040/pdfft?md5=ae9fa5eaddbf3de3d1525c7c64f74dbf&pid=1-s2.0-S0022191024000040-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191024000040","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The environment is changing faster than anticipated due to climate change, making species more vulnerable to its impacts. The level of vulnerability of species is influenced by factors such as the degree and duration of exposure, as well as the physiological sensitivity of organisms to changes in their environments, which has been shown to vary among species, populations, and individuals. Here, we compared physiological changes in fecundity, critical thermal maximum (CTmax), respiratory quotient (RQ), and DNA damage in ovaries in response to temperature stress in two species of fruit fly, Drosophila melanogaster (25 vs. 29.5 °C) and Drosophila pseudoobscura (20.5 vs. 25 °C). The fecundity of D. melanogaster was more affected by high temperatures when exposed during egg through adult development, while D. pseudoobscura was most significantly affected when exposed to high temperatures exclusively during egg through pupal development. Additionally, D. melanogaster males exhibited a decrease of CTmax under high temperatures, while females showed an increase of CTmax when exposed to high temperatures during egg through adult development. while D. pseudoobscura females and males showed an increased CTmax only when reared at high temperatures during egg through pupae development. Moreover, both species showed an acceleration in oogenesis and an increase in apoptosis due to heat stress. These changes can likely be attributed to key differences in the geographic range, thermal range, development time, and other different factors between these two systems. Through this comparison of variation in physiology and developmental response to thermal stress, we found important differences between species and sexes that suggest future work needs to account for these factors separately in understanding the effects of constant increased temperatures.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.