Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries

Ling Che, Zhaowen Hu, Tao Zhang, Peiming Dai, Chengyu Chen, Chao Shen, Haitao Huang, Lifang Jiao, Ting Jin, Keyu Xie
{"title":"Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries","authors":"Ling Che,&nbsp;Zhaowen Hu,&nbsp;Tao Zhang,&nbsp;Peiming Dai,&nbsp;Chengyu Chen,&nbsp;Chao Shen,&nbsp;Haitao Huang,&nbsp;Lifang Jiao,&nbsp;Ting Jin,&nbsp;Keyu Xie","doi":"10.1002/bte2.20230064","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li<sup>+</sup> transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB<sup>−</sup> with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI<sup>−</sup>, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g<sup>−1</sup> and 2.5 Ah LiFePO<sub>4</sub>||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO<sub>4</sub>||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li+ transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g−1 and 2.5 Ah LiFePO4||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO4||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.

Abstract Image

Abstract Image

调节低温锂离子电池醋酸乙酯基电解液中石墨的界面化学性质
锂离子电池在零度以下会出现严重的容量损失,甚至无法工作,这主要是由于 Li+ 在固体电解质相间层(SEI)和脱溶过程中传输缓慢所致。醋酸乙酯(EA)是一种非常有前途的低温电解质溶剂,但它与石墨(Gr)阳极的相容性较差。在这里,我们通过阴离子的协同作用调整了基于 EA 的电解质的界面化学性质。低溶解度的 ODFB 参与溶解鞘,大大降低了去溶解能。同时,结合 FSI- 的高解离度,两种阴离子的还原作用构建了富含无机物的 SEI,从而提高了界面稳定性。该电解液使 Gr 阳极的容量达到 293 mA h g-1,2.5 Ah LiFePO4||Gr 袋式电池在 -20°C 时的容量保持率达到 96.85%。值得注意的是,使用所设计电解液的 LiFePO4||Gr 袋式电池在 -40°C 时仍能保持 66.28% 的室温容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信