Ling Che, Zhaowen Hu, Tao Zhang, Peiming Dai, Chengyu Chen, Chao Shen, Haitao Huang, Lifang Jiao, Ting Jin, Keyu Xie
{"title":"Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries","authors":"Ling Che, Zhaowen Hu, Tao Zhang, Peiming Dai, Chengyu Chen, Chao Shen, Haitao Huang, Lifang Jiao, Ting Jin, Keyu Xie","doi":"10.1002/bte2.20230064","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li<sup>+</sup> transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB<sup>−</sup> with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI<sup>−</sup>, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g<sup>−1</sup> and 2.5 Ah LiFePO<sub>4</sub>||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO<sub>4</sub>||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230064","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries suffer from severe capacity loss and even fail to work under subzero temperatures, which is mainly due to the sluggish Li+ transportation in the solid electrolyte interphase (SEI) and desolvation process. Ethyl acetate (EA) is a highly promising solvent for low-temperature electrolytes, yet it has poor compatibility with graphite (Gr) anode. Here, we tuned the interfacial chemistry of EA-based electrolytes via synergies of anions. ODFB− with low solvation numbers, participates in the solvation sheath, significantly reducing the desolvation energy. Meanwhile, combined with the high dissociation of FSI−, the reduction of both anions constructs an inorganic-rich SEI to improve interfacial stability. The electrolyte enables Gr anode to deliver a capacity of 293 mA h g−1 and 2.5 Ah LiFePO4||Gr pouch cell to exhibit 96.85% capacity retention at −20°C. Remarkably, LiFePO4||Gr pouch cell with the designed electrolyte can still retain 66.28% of its room-temperature capacity even at −40°C.