Jie Sun, Zhengyao Chang, Xudong Gao, Huiwei Sun, Yantao Chai, Xiaojuan Li, Xiaoming Zhang, Fan Feng
{"title":"Novel nanoparticle CS-C60-Fe3O4 magnetically induces tissue-specific aggregation and enhances thermal ablation of hepatocellular carcinoma","authors":"Jie Sun, Zhengyao Chang, Xudong Gao, Huiwei Sun, Yantao Chai, Xiaojuan Li, Xiaoming Zhang, Fan Feng","doi":"10.1186/s12645-024-00245-7","DOIUrl":null,"url":null,"abstract":"Metallofullerenes are an important type of metallic nanomaterial with promising applications in several medical fields. Thermal ablation, including radiofrequency ablation (RFA) and microwave ablation (MWA), is an important treatment strategy for advanced hepatocellular carcinoma (HCC). The thermal expansion of fullerenes makes them good adjuncts to thermal ablation treatment of HCC. In this study, we used an innovative method of emulsification and cross-linking to produce CS-C60-Fe3O4 (Chitosan-C60-Fe3O4) nanoparticles, which have the advantages of uniform particle size and high bioavailability, as a kind of novel nano-pharmaceutical. The CS-C60-Fe3O4 nanoparticles were prepared by the cross-linking reaction from chitosan–acetic acid solution, Fe3O4 nanoparticles by Fe2SO4·7H2O and FeCl3·6H2O, and C60. The average particle size of CS-C60-Fe3O4 was 194.3 nm. Because CS-C60-Fe3O4 is magnetic, it can achieve specific and tissue aggregation in HCC tumor tissues. Moreover, compared with normal soluble C60 (EL35-C60), CS-C60-Fe3O4 prolonged the retention time of C60 in the blood of mice. CS-C60-Fe3O4 alone is not cytotoxic to cultured cells or tumor tissues, but when combined with thermal ablation strategies (RFA and MWA), it significantly upregulates the antitumor effects of thermal ablation on HCC tissues, that is, it acts as a sensitiser to thermal ablation. In the presence of thermal ablation, CS-C60-Fe3O4 interfered with iron metabolism in HCC cells and induced ferroptosis of HCC cells in the tumor tissues. These results not only expand our understanding of metallofullerenes but also provide additional options for the treatment of advanced HCC.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"30 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12645-024-00245-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metallofullerenes are an important type of metallic nanomaterial with promising applications in several medical fields. Thermal ablation, including radiofrequency ablation (RFA) and microwave ablation (MWA), is an important treatment strategy for advanced hepatocellular carcinoma (HCC). The thermal expansion of fullerenes makes them good adjuncts to thermal ablation treatment of HCC. In this study, we used an innovative method of emulsification and cross-linking to produce CS-C60-Fe3O4 (Chitosan-C60-Fe3O4) nanoparticles, which have the advantages of uniform particle size and high bioavailability, as a kind of novel nano-pharmaceutical. The CS-C60-Fe3O4 nanoparticles were prepared by the cross-linking reaction from chitosan–acetic acid solution, Fe3O4 nanoparticles by Fe2SO4·7H2O and FeCl3·6H2O, and C60. The average particle size of CS-C60-Fe3O4 was 194.3 nm. Because CS-C60-Fe3O4 is magnetic, it can achieve specific and tissue aggregation in HCC tumor tissues. Moreover, compared with normal soluble C60 (EL35-C60), CS-C60-Fe3O4 prolonged the retention time of C60 in the blood of mice. CS-C60-Fe3O4 alone is not cytotoxic to cultured cells or tumor tissues, but when combined with thermal ablation strategies (RFA and MWA), it significantly upregulates the antitumor effects of thermal ablation on HCC tissues, that is, it acts as a sensitiser to thermal ablation. In the presence of thermal ablation, CS-C60-Fe3O4 interfered with iron metabolism in HCC cells and induced ferroptosis of HCC cells in the tumor tissues. These results not only expand our understanding of metallofullerenes but also provide additional options for the treatment of advanced HCC.
Cancer NanotechnologyPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍:
Aim:
Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas.
Scope:
Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.