{"title":"SLAG—software for reconstruction of historical smelting processes based on slag properties","authors":"Krzysztof Kupczak, Rafał Warchulski","doi":"10.1111/arcm.12940","DOIUrl":null,"url":null,"abstract":"<p>The publication presents the functions of the SLAG software created to recreate historical metallurgical processes. SLAG allows for determining the smelting temperature, the viscosity of the metallurgical melt, and the oxygen and sulfur fugacities during smelting. With software, both liquidus temperature and melt viscosity can be calculated using different models, covering the range of chemical compositions of historical slags as wide as possible. Based on thermodynamic calculations, SLAG allows the performance of O<sub>2</sub> and S<sub>2</sub> fugacity calculations in the temperature range of 1000–2000 K (727–1727°C). The range of applicability of other properties (viscosity and liquidus temperature) depends only on the limitations of individual models. Using SLAG, it is also possible to create predominance area diagrams (PADs) and diagrams that consider the viscosity's dependence on temperature for slag of a given chemical composition. Based on glass transition temperature (Tg) and melt fragility, it is also possible to reconstruct the conditions that prevailed during the various stages of historical glass manufacturing processes.</p>","PeriodicalId":8254,"journal":{"name":"Archaeometry","volume":"66 4","pages":"803-823"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaeometry","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/arcm.12940","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The publication presents the functions of the SLAG software created to recreate historical metallurgical processes. SLAG allows for determining the smelting temperature, the viscosity of the metallurgical melt, and the oxygen and sulfur fugacities during smelting. With software, both liquidus temperature and melt viscosity can be calculated using different models, covering the range of chemical compositions of historical slags as wide as possible. Based on thermodynamic calculations, SLAG allows the performance of O2 and S2 fugacity calculations in the temperature range of 1000–2000 K (727–1727°C). The range of applicability of other properties (viscosity and liquidus temperature) depends only on the limitations of individual models. Using SLAG, it is also possible to create predominance area diagrams (PADs) and diagrams that consider the viscosity's dependence on temperature for slag of a given chemical composition. Based on glass transition temperature (Tg) and melt fragility, it is also possible to reconstruct the conditions that prevailed during the various stages of historical glass manufacturing processes.
期刊介绍:
Archaeometry is an international research journal covering the application of the physical and biological sciences to archaeology, anthropology and art history. Topics covered include dating methods, artifact studies, mathematical methods, remote sensing techniques, conservation science, environmental reconstruction, biological anthropology and archaeological theory. Papers are expected to have a clear archaeological, anthropological or art historical context, be of the highest scientific standards, and to present data of international relevance.
The journal is published on behalf of the Research Laboratory for Archaeology and the History of Art, Oxford University, in association with Gesellschaft für Naturwissenschaftliche Archäologie, ARCHAEOMETRIE, the Society for Archaeological Sciences (SAS), and Associazione Italian di Archeometria.