The ghost of past climate acting on present-day plant diversity: Lessons from a climate-based delimitation of the tropical alpine ecosystem

IF 3.7 1区 生物学 Q1 Agricultural and Biological Sciences
Martha Kandziora, Juan M. Gorospe, Luciana Salomon, Diana L. A. Vásquez, Maria Pinilla Vargas, Filip Kolář, Petr Sklenář, Roswitha Schmickl
{"title":"The ghost of past climate acting on present-day plant diversity: Lessons from a climate-based delimitation of the tropical alpine ecosystem","authors":"Martha Kandziora, Juan M. Gorospe, Luciana Salomon, Diana L. A. Vásquez, Maria Pinilla Vargas, Filip Kolář, Petr Sklenář, Roswitha Schmickl","doi":"10.1111/jse.13048","DOIUrl":null,"url":null,"abstract":"Habitat stability is important for maintaining biodiversity by preventing species extinction, but this stability is being challenged by climate change. The tropical alpine ecosystem is currently one of the ecosystems most threatened by global warming, and the flora close to the permanent snow line is at high risk of extinction. The tropical alpine ecosystem, found in South and Central America, Malesia and Papuasia, Africa, and Hawaii, is of relatively young evolutionary age, and it has been exposed to changing climates since its origin, particularly during the Pleistocene. Estimating habitat loss and gain between the Last Glacial Maximum (LGM) and the present allows us to relate current biodiversity to past changes in climate and habitat stability. In order to do so, (i) we developed a unifying climate-based delimitation of tropical alpine regions across continents, and (ii) we used this delimitation to assess the degree of habitat stability, that is, the overlap of suitable areas between the LGM and the present, in different tropical alpine regions. Finally, we discuss the link between habitat stability and tropical alpine plant diversity. Our climate-based delimitation approach can be easily applied to other ecosystems using our developed code, facilitating macro-comparative studies of habitat dynamics through time.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"34 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jse.13048","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Habitat stability is important for maintaining biodiversity by preventing species extinction, but this stability is being challenged by climate change. The tropical alpine ecosystem is currently one of the ecosystems most threatened by global warming, and the flora close to the permanent snow line is at high risk of extinction. The tropical alpine ecosystem, found in South and Central America, Malesia and Papuasia, Africa, and Hawaii, is of relatively young evolutionary age, and it has been exposed to changing climates since its origin, particularly during the Pleistocene. Estimating habitat loss and gain between the Last Glacial Maximum (LGM) and the present allows us to relate current biodiversity to past changes in climate and habitat stability. In order to do so, (i) we developed a unifying climate-based delimitation of tropical alpine regions across continents, and (ii) we used this delimitation to assess the degree of habitat stability, that is, the overlap of suitable areas between the LGM and the present, in different tropical alpine regions. Finally, we discuss the link between habitat stability and tropical alpine plant diversity. Our climate-based delimitation approach can be easily applied to other ecosystems using our developed code, facilitating macro-comparative studies of habitat dynamics through time.

Abstract Image

过去的气候对当今植物多样性的影响:从基于气候的热带高山生态系统划界中汲取的教训
栖息地的稳定性对于通过防止物种灭绝来维持生物多样性非常重要,但这种稳定性正受到气候变化的挑战。热带高山生态系统是目前受全球变暖威胁最大的生态系统之一,靠近永久雪线的植物区系面临灭绝的高风险。热带高山生态系统分布在南美洲和中美洲、马来西亚和巴布亚、非洲和夏威夷,其进化年龄相对较小,自起源以来,特别是在更新世期间,一直面临着气候的变化。估算从末次冰川极盛时期(LGM)到现在的栖息地损耗和增益,可以让我们将当前的生物多样性与过去气候和栖息地稳定性的变化联系起来。为此,(i) 我们制定了基于气候的跨大陆热带高寒地区统一划界,(ii) 我们利用这一划界来评估不同热带高寒地区的栖息地稳定程度,即从 LGM 到现在之间适宜区域的重叠程度。最后,我们讨论了栖息地稳定性与热带高山植物多样性之间的联系。利用我们开发的代码,我们基于气候的划界方法可以很容易地应用于其他生态系统,从而促进对不同时期栖息地动态的宏观比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Systematics and Evolution
Journal of Systematics and Evolution Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
7.40
自引率
8.10%
发文量
1368
审稿时长
6-12 weeks
期刊介绍: Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信