Faiza Qayyum, Nagwan Abdel Samee, Maali Alabdulhafith, Ahmed Aziz, Mohammad Hijjawi
{"title":"Shapley-based interpretation of deep learning models for wildfire spread rate prediction","authors":"Faiza Qayyum, Nagwan Abdel Samee, Maali Alabdulhafith, Ahmed Aziz, Mohammad Hijjawi","doi":"10.1186/s42408-023-00242-y","DOIUrl":null,"url":null,"abstract":"Predicting wildfire progression is vital for countering its detrimental effects. While numerous studies over the years have delved into forecasting various elements of wildfires, many of these complex models are perceived as “black boxes”, making it challenging to produce transparent and easily interpretable outputs. Evaluating such models necessitates a thorough understanding of multiple pivotal factors that influence their performance. This study introduces a deep learning methodology based on transformer to determine wildfire susceptibility. To elucidate the connection between predictor variables and the model across diverse parameters, we employ SHapley Additive exPlanations (SHAP) for a detailed analysis. The model’s predictive robustness is further bolstered through various cross-validation techniques. Upon examining various wildfire spread rate prediction models, transformer stands out, outperforming its peers in terms of accuracy and reliability. Although the models demonstrated a high level of accuracy when applied to the development dataset, their performance deteriorated when evaluated against the separate evaluation dataset. Interestingly, certain models that showed the lowest errors during the development stage exhibited the highest errors in the subsequent evaluation phase. In addition, SHAP outcomes underscore the invaluable role of explainable AI in enriching our comprehension of wildfire spread rate prediction.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"58 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s42408-023-00242-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting wildfire progression is vital for countering its detrimental effects. While numerous studies over the years have delved into forecasting various elements of wildfires, many of these complex models are perceived as “black boxes”, making it challenging to produce transparent and easily interpretable outputs. Evaluating such models necessitates a thorough understanding of multiple pivotal factors that influence their performance. This study introduces a deep learning methodology based on transformer to determine wildfire susceptibility. To elucidate the connection between predictor variables and the model across diverse parameters, we employ SHapley Additive exPlanations (SHAP) for a detailed analysis. The model’s predictive robustness is further bolstered through various cross-validation techniques. Upon examining various wildfire spread rate prediction models, transformer stands out, outperforming its peers in terms of accuracy and reliability. Although the models demonstrated a high level of accuracy when applied to the development dataset, their performance deteriorated when evaluated against the separate evaluation dataset. Interestingly, certain models that showed the lowest errors during the development stage exhibited the highest errors in the subsequent evaluation phase. In addition, SHAP outcomes underscore the invaluable role of explainable AI in enriching our comprehension of wildfire spread rate prediction.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.