Assessment of quadrivalent characteristics influencing chromosome segregation by analyzing human preimplantation embryos from reciprocal translocation carriers
Ziravard N. Tonyan, Irina L. Puppo, Alsu F. Saifitdinova, Tatyana V. Vavilova, Andrey S. Glotov
{"title":"Assessment of quadrivalent characteristics influencing chromosome segregation by analyzing human preimplantation embryos from reciprocal translocation carriers","authors":"Ziravard N. Tonyan, Irina L. Puppo, Alsu F. Saifitdinova, Tatyana V. Vavilova, Andrey S. Glotov","doi":"10.3897/compcytogen.18.115070","DOIUrl":null,"url":null,"abstract":"\nPatterns of meiotic chromosome segregation were analyzed in cleavage stage and blastocyst stage human embryos from couples with autosomal reciprocal translocations (ART). The influence of quadrivalent asymmetry degree, the presence of terminal breakpoints, and the involvement of acrocentric chromosomes in the rearrangement were analyzed to evaluate their contribution to the formation of non-viable embryos with significant chromosomal imbalance due to pathological segregation patterns and to assess the selection of human embryos by the blastocyst stage. A selection of viable embryos resulting from alternate and adjacent-1 segregation and a significant reduction in the detection frequency of the 3 : 1 segregation pattern were observed in human embryos at the blastocyst stage. The presence of terminal breakpoints increased the frequency of 3 : 1 segregation and was also associated with better survival of human embryos resulting from adjacent-1 mode, reflecting the process of natural selection of viable embryos to the blastocyst stage. The demonstrated patterns of chromosome segregation and inheritance of a balanced karyotype in humans will contribute to optimizing the prediction of the outcomes of in vitro fertilization programs and assessing the risks of the formation of unbalanced embryos for ART carriers.","PeriodicalId":50656,"journal":{"name":"Comparative Cytogenetics","volume":"177 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3897/compcytogen.18.115070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Patterns of meiotic chromosome segregation were analyzed in cleavage stage and blastocyst stage human embryos from couples with autosomal reciprocal translocations (ART). The influence of quadrivalent asymmetry degree, the presence of terminal breakpoints, and the involvement of acrocentric chromosomes in the rearrangement were analyzed to evaluate their contribution to the formation of non-viable embryos with significant chromosomal imbalance due to pathological segregation patterns and to assess the selection of human embryos by the blastocyst stage. A selection of viable embryos resulting from alternate and adjacent-1 segregation and a significant reduction in the detection frequency of the 3 : 1 segregation pattern were observed in human embryos at the blastocyst stage. The presence of terminal breakpoints increased the frequency of 3 : 1 segregation and was also associated with better survival of human embryos resulting from adjacent-1 mode, reflecting the process of natural selection of viable embryos to the blastocyst stage. The demonstrated patterns of chromosome segregation and inheritance of a balanced karyotype in humans will contribute to optimizing the prediction of the outcomes of in vitro fertilization programs and assessing the risks of the formation of unbalanced embryos for ART carriers.
期刊介绍:
Comparative Cytogenetics is a peer-reviewed, open-access, rapid online journal launched to accelerate research on all aspects of plant and animal cytogenetics, karyosystematics, and molecular systematics.
All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.