Identifying and Categorizing Bias in AI/ML for Earth Sciences

IF 6.9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Amy McGovern, Ann Bostrom, Marie McGraw, Randy J. Chase, David John Gagne, Imme Ebert-Uphoff, Kate D. Musgrave, Andrea Schumacher
{"title":"Identifying and Categorizing Bias in AI/ML for Earth Sciences","authors":"Amy McGovern, Ann Bostrom, Marie McGraw, Randy J. Chase, David John Gagne, Imme Ebert-Uphoff, Kate D. Musgrave, Andrea Schumacher","doi":"10.1175/bams-d-23-0196.1","DOIUrl":null,"url":null,"abstract":"Abstract Artificial Intelligence (AI) can be used to improve performance across a wide range of Earth System prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth Sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life-cycle. We highlight examples from a variety of Earth System prediction tasks of each category of bias.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"58 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/bams-d-23-0196.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Artificial Intelligence (AI) can be used to improve performance across a wide range of Earth System prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth Sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life-cycle. We highlight examples from a variety of Earth System prediction tasks of each category of bias.
识别地球科学人工智能/ML 中的偏差并进行分类
摘要 人工智能(AI)可用于提高各种地球系统预测任务的性能。与人工智能的任何应用一样,重要的是要以道德和负责任的方式开发人工智能,以尽量减少偏见和其他影响。在这项工作中,我们通过对地球科学领域的人工智能偏差进行分类,扩展了之前的工作,展示了人工智能在天气和气候应用中可能出现的问题。这种分类可以帮助人工智能开发人员在整个人工智能开发生命周期中识别可能影响其模型的潜在偏差。我们重点介绍了地球系统预测任务中各类偏差的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
6.20%
发文量
231
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the American Meteorological Society (BAMS) is the flagship magazine of AMS and publishes articles of interest and significance for the weather, water, and climate community as well as news, editorials, and reviews for AMS members.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信