{"title":"Voxel-wise Medical Images Generalization for Eliminating Distribution Shift","authors":"Feifei Li, Yuanbin Wang, Oya Beyan, Mirjam Schöneck, Liliana Lourenco Caldeira","doi":"10.1145/3643034","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, more and more machine learning methods are applied in the medical domain. Supervised Learning methods adopted in classification, prediction, and segmentation tasks for medical images always experience decreased performance when the training and testing datasets do not follow the i.i.d(independent and identically distributed) assumption. These distribution shift situations seriously influence machine learning applications’ robustness, fairness, and trustworthiness in the medical domain. Hence, in this paper, we adopt the CycleGAN(Generative Adversarial Networks) method to cycle train the CT(Computer Tomography) data from different scanners/manufacturers, which aims to eliminate the distribution shift from diverse data terminals, on the basis of our previous work[14]. However, due to the model collapse problem and generative mechanisms of the GAN-based model, the images we generated contained serious artifacts. To remove the boundary marks and artifacts, we adopt score-based diffusion generative models to refine the images voxel-wisely. This innovative combination of two generative models enhances the quality of data providers while maintaining significant features. Meanwhile, we use five paired patients’ medical images to deal with the evaluation experiments with SSIM(structural similarity index measure) metrics and the segmentation model’s performance comparison. We conclude that CycleGAN can be utilized as an efficient data augmentation technique rather than a distribution-shift-eliminating method. While the denoising diffusion model is more suitable for dealing with the distribution shift problem aroused by the different terminal modules. In addition, another limitation of generative methods applied in medical images is the difficulty in obtaining large and diverse datasets that accurately capture the complexity of biological structure and variability. In future works, we will evaluate the original and generative datasets by experimenting with a broader range of supervised methods. We will implement the generative methods under the federated learning architecture, which can preserve their benefits and eliminate the distribution shift problem in a broader range.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"1 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643034","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, more and more machine learning methods are applied in the medical domain. Supervised Learning methods adopted in classification, prediction, and segmentation tasks for medical images always experience decreased performance when the training and testing datasets do not follow the i.i.d(independent and identically distributed) assumption. These distribution shift situations seriously influence machine learning applications’ robustness, fairness, and trustworthiness in the medical domain. Hence, in this paper, we adopt the CycleGAN(Generative Adversarial Networks) method to cycle train the CT(Computer Tomography) data from different scanners/manufacturers, which aims to eliminate the distribution shift from diverse data terminals, on the basis of our previous work[14]. However, due to the model collapse problem and generative mechanisms of the GAN-based model, the images we generated contained serious artifacts. To remove the boundary marks and artifacts, we adopt score-based diffusion generative models to refine the images voxel-wisely. This innovative combination of two generative models enhances the quality of data providers while maintaining significant features. Meanwhile, we use five paired patients’ medical images to deal with the evaluation experiments with SSIM(structural similarity index measure) metrics and the segmentation model’s performance comparison. We conclude that CycleGAN can be utilized as an efficient data augmentation technique rather than a distribution-shift-eliminating method. While the denoising diffusion model is more suitable for dealing with the distribution shift problem aroused by the different terminal modules. In addition, another limitation of generative methods applied in medical images is the difficulty in obtaining large and diverse datasets that accurately capture the complexity of biological structure and variability. In future works, we will evaluate the original and generative datasets by experimenting with a broader range of supervised methods. We will implement the generative methods under the federated learning architecture, which can preserve their benefits and eliminate the distribution shift problem in a broader range.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.