{"title":"Mild Pretreatment Combined with Fed-Batch Strategy to Improve the Enzymatic Efficiency of Apple Pomace at High-Solids Content","authors":"Jianjun Chen, Jiameng Zhou, Rongjie Yuan, Xue Shao, Yaoyajie Lu, Weidi Sun, Xianglin Cao","doi":"10.1007/s12155-024-10719-6","DOIUrl":null,"url":null,"abstract":"<div><p>This a two-part study was conducted to improve the enzymatic saccharification of apple pomace (AP) by pretreatment and fed-batch enzymatic hydrolysis. The impact on the enzymatic hydrolysis and structural characterization in AP of four pretreatment processes, sodium hydroxide (SH), ethanol (ETH), liquid hot water (LHW), and <i>Phanerochaete chrysosporium</i> (PC), were evaluated. In addition, the enzymatic hydrolysis efficiency of AP at high solids content was improved by optimizing the enzyme hydrolysis conditions and using fed-batch strategy. The results demonstrated that both ETH 160 °C and PC pretreatments effectively enhanced the efficiency of enzymatic saccharification in AP while disrupting its compact structure. Notably, PC solid-state fermentation for 7 d proved to be a mild yet effective pretreatment method for AP. By utilizing PC pretreated residue at a substrate content of 20% (w/v) with an addition of 5 mg/g pectinase and 50 mg/g Tween 80, along with employing fed-batch enzymatic hydrolysis, the total sugar concentration increased by 30.3% after 72 h. At this point, the highest total sugar concentration reached 77.5 g/L with an enzymatic hydrolysis yield reaching 73% (glucose). This study presents not only the first application of PC as a pretreatment method for AP but also establishes a new enzymatic process with high solids content to provide a new strategy for AP resource utilization.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1674 - 1688"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10719-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This a two-part study was conducted to improve the enzymatic saccharification of apple pomace (AP) by pretreatment and fed-batch enzymatic hydrolysis. The impact on the enzymatic hydrolysis and structural characterization in AP of four pretreatment processes, sodium hydroxide (SH), ethanol (ETH), liquid hot water (LHW), and Phanerochaete chrysosporium (PC), were evaluated. In addition, the enzymatic hydrolysis efficiency of AP at high solids content was improved by optimizing the enzyme hydrolysis conditions and using fed-batch strategy. The results demonstrated that both ETH 160 °C and PC pretreatments effectively enhanced the efficiency of enzymatic saccharification in AP while disrupting its compact structure. Notably, PC solid-state fermentation for 7 d proved to be a mild yet effective pretreatment method for AP. By utilizing PC pretreated residue at a substrate content of 20% (w/v) with an addition of 5 mg/g pectinase and 50 mg/g Tween 80, along with employing fed-batch enzymatic hydrolysis, the total sugar concentration increased by 30.3% after 72 h. At this point, the highest total sugar concentration reached 77.5 g/L with an enzymatic hydrolysis yield reaching 73% (glucose). This study presents not only the first application of PC as a pretreatment method for AP but also establishes a new enzymatic process with high solids content to provide a new strategy for AP resource utilization.
本研究由两部分组成,旨在通过预处理和喂料批次酶水解改进苹果渣(AP)的酶糖化。研究评估了氢氧化钠(SH)、乙醇(ETH)、液态热水(LHW)和蛹虫草(PC)四种预处理工艺对苹果渣酶水解和结构特征的影响。此外,通过优化酶水解条件和采用喂料批处理策略,提高了高固体含量下 AP 的酶水解效率。结果表明,ETH 160 °C 和 PC 预处理都能有效提高 AP 的酶糖化效率,同时破坏其紧密结构。值得注意的是,PC 固态发酵 7 d 被证明是一种温和而有效的 AP 预处理方法。利用基质含量为 20% (w/v)的 PC 预处理残渣,添加 5 mg/g 果胶酶和 50 mg/g 吐温 80,并采用喂料式酶水解法,72 h 后总糖浓度增加了 30.3%,此时最高总糖浓度达到 77.5 g/L,酶水解产率达到 73%(葡萄糖)。这项研究不仅首次将 PC 用作 AP 的预处理方法,还建立了一种高固体含量的新型酶解工艺,为 AP 资源利用提供了一种新策略。
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.