A new technique for fault diagnosis in transformer insulating oil based on infrared spectroscopy measurements

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
High Voltage Pub Date : 2024-01-25 DOI:10.1049/hve2.12405
Mohamed M. F. Darwish, Mohamed H. A. Hassan, Nagat M. K. Abdel-Gawad, Matti Lehtonen, Diaa-Eldin A. Mansour
{"title":"A new technique for fault diagnosis in transformer insulating oil based on infrared spectroscopy measurements","authors":"Mohamed M. F. Darwish,&nbsp;Mohamed H. A. Hassan,&nbsp;Nagat M. K. Abdel-Gawad,&nbsp;Matti Lehtonen,&nbsp;Diaa-Eldin A. Mansour","doi":"10.1049/hve2.12405","DOIUrl":null,"url":null,"abstract":"<p>Condition monitoring of the insulating system within power transformers has a massive importance according to the electrical utilities. Dissolved gas analysis (DGA) is frequently used for this purpose. However, DGA lacks the necessary level of accuracy to identify all equipment faults, particularly in their initial stages of degradation. Also, it does not have the capability for real-time monitoring and relies on manual sampling and laboratory testing, causing potential delays in fault identification. Additionally, the interpretation of DGA data necessitates specialised expertise, which may pose difficulties for smaller entities that have limited access to resources. Therefore, the contribution of this research is to use infrared spectroscopy measurements as a new effective technique substituting the DGA method for fault diagnosis in insulating oil. The inception faults that were considered in this study were the electrical fault (discharges of high energy) and the thermal fault (300°C &lt; Temperature &lt; 700°C). Regarding that, two test cells were crafted especially for serving the simulation processes inside the laboratory for both types of inception faults. Subsequently, six samples of pure paraffinic mineral oil were taken to be degraded in the laboratory. Following that, all of them besides another sample that were not subjected to any kind of faults were taken to be examined by Fourier transform infrared (FTIR) spectroscopy to obtain an overview of the oil's behaviour in each fault case. After that, the FTIR analysis was initially verified utilising the DGA method. Then, for further affirmation, the dielectric dissipation factor (DDF) for all samples was measured. In the final analysis, the verification tests provide experimental evidence about the outperformance of this new optical technique in detecting the transformer's inception faults in addition to proving its potential for being a superior alternative to the well-known traditional diagnostic techniques.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 2","pages":"319-335"},"PeriodicalIF":4.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12405","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12405","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Condition monitoring of the insulating system within power transformers has a massive importance according to the electrical utilities. Dissolved gas analysis (DGA) is frequently used for this purpose. However, DGA lacks the necessary level of accuracy to identify all equipment faults, particularly in their initial stages of degradation. Also, it does not have the capability for real-time monitoring and relies on manual sampling and laboratory testing, causing potential delays in fault identification. Additionally, the interpretation of DGA data necessitates specialised expertise, which may pose difficulties for smaller entities that have limited access to resources. Therefore, the contribution of this research is to use infrared spectroscopy measurements as a new effective technique substituting the DGA method for fault diagnosis in insulating oil. The inception faults that were considered in this study were the electrical fault (discharges of high energy) and the thermal fault (300°C < Temperature < 700°C). Regarding that, two test cells were crafted especially for serving the simulation processes inside the laboratory for both types of inception faults. Subsequently, six samples of pure paraffinic mineral oil were taken to be degraded in the laboratory. Following that, all of them besides another sample that were not subjected to any kind of faults were taken to be examined by Fourier transform infrared (FTIR) spectroscopy to obtain an overview of the oil's behaviour in each fault case. After that, the FTIR analysis was initially verified utilising the DGA method. Then, for further affirmation, the dielectric dissipation factor (DDF) for all samples was measured. In the final analysis, the verification tests provide experimental evidence about the outperformance of this new optical technique in detecting the transformer's inception faults in addition to proving its potential for being a superior alternative to the well-known traditional diagnostic techniques.

Abstract Image

基于红外光谱测量的变压器绝缘油故障诊断新技术
电力变压器绝缘系统的状态监测对于电力公司来说非常重要。为此,经常使用溶解气体分析法(DGA)。然而,DGA 缺乏必要的精确度来识别所有设备故障,尤其是在设备退化的初始阶段。而且,DGA 不具备实时监测能力,需要依靠人工采样和实验室测试,这可能会延误故障识别。此外,对 DGA 数据的解读需要专业知识,这可能会给资源有限的小型实体造成困难。因此,本研究的贡献在于将红外光谱测量作为一种新的有效技术,取代 DGA 方法用于绝缘油故障诊断。本研究考虑的起始故障是电故障(高能放电)和热故障(300°C < Temperature <700°C)。为此,专门制作了两个试验箱,用于在实验室内对这两种起始故障的模拟过程。随后,六份纯石蜡矿物油样品被送入实验室进行降解。随后,除了另一个未受任何故障影响的样本外,所有样本都接受了傅立叶变换红外光谱(FTIR)的检测,以了解油品在各种故障情况下的表现。然后,利用 DGA 方法对傅立叶变换红外光谱分析进行初步验证。然后,为了进一步确认,对所有样品的介质损耗因子(DDF)进行了测量。归根结底,验证测试提供了实验证据,证明这种新型光学技术在检测变压器起始故障方面表现出色,并证明其有潜力成为众所周知的传统诊断技术的优质替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信