{"title":"Radial basis function-based Pareto optimization of an outer rotor brushless DC motor","authors":"Omid Rahmani, Sayed Alireza Sadrossadat, Mostafa Noohi, Ali Mirvakili, Maitham Shams","doi":"10.1002/jnm.3214","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the development of an optimization and modeling method for the objective functions of output power, efficiency and weight of an outer rotor permanent magnet brushless DC (BLDC) motor based on radial basis function (RBF) approximation technique. The proposed RBF-based Pareto optimization method requires less knowledge about electric/magnetic formulas and can replace conventional optimizations based on these equations with higher accuracy. To apply the proposed optimization method, the initial design should be developed using such equations. Therefore, RBFs are used to model and predict engine behavior. To optimize the objective functions, we used a genetic algorithm optimization technique with nonlinear electric and magnetic constraints to find the Pareto front set. The design obtained by the proposed radial basis function Pareto optimization (RBFPO) method was finally verified by Ansoft Maxwell. The results of optimal design using the RBFPO method have higher output power and efficiency. Also, in addition to the advantage of a favorable accuracy, RBF-based models are significantly faster than models available in simulation tools.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3214","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the development of an optimization and modeling method for the objective functions of output power, efficiency and weight of an outer rotor permanent magnet brushless DC (BLDC) motor based on radial basis function (RBF) approximation technique. The proposed RBF-based Pareto optimization method requires less knowledge about electric/magnetic formulas and can replace conventional optimizations based on these equations with higher accuracy. To apply the proposed optimization method, the initial design should be developed using such equations. Therefore, RBFs are used to model and predict engine behavior. To optimize the objective functions, we used a genetic algorithm optimization technique with nonlinear electric and magnetic constraints to find the Pareto front set. The design obtained by the proposed radial basis function Pareto optimization (RBFPO) method was finally verified by Ansoft Maxwell. The results of optimal design using the RBFPO method have higher output power and efficiency. Also, in addition to the advantage of a favorable accuracy, RBF-based models are significantly faster than models available in simulation tools.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.