{"title":"New results on orthogonal arrays OA(3,5,4n + 2)","authors":"Dongliang Li, Haitao Cao","doi":"10.1016/j.jcta.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><p><span>An orthogonal array of index unity, order </span><em>v</em>, degree 5 and strength 3, or an OA<span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in short, is a <span><math><mn>5</mn><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> array on <em>v</em> symbols and in every <span><math><mn>3</mn><mo>×</mo><msup><mrow><mi>v</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> subarray, each 3-tuple column vector occurs exactly once. The existence of an OA<span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span> is still open except for few known infinite classes of <em>n</em><span>. In this paper, we introduce a new combinatorial structure<span> called three dimensions orthogonal complete large sets of disjoint incomplete Latin squares and use it to obtain many new infinite classes of OA</span></span><span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>4</mn><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>s.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105864"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
An orthogonal array of index unity, order v, degree 5 and strength 3, or an OA in short, is a array on v symbols and in every subarray, each 3-tuple column vector occurs exactly once. The existence of an OA is still open except for few known infinite classes of n. In this paper, we introduce a new combinatorial structure called three dimensions orthogonal complete large sets of disjoint incomplete Latin squares and use it to obtain many new infinite classes of OAs.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.