Polarization effect induced by strain in hexagonal boron nitride nanoribbons

Ningqiang Shi , Ling Li , Junsong Wang , Xiangqian Jiang , Jiandong Hao , Jinchang Meng , Tingwei Yan , Chuncheng Ban
{"title":"Polarization effect induced by strain in hexagonal boron nitride nanoribbons","authors":"Ningqiang Shi ,&nbsp;Ling Li ,&nbsp;Junsong Wang ,&nbsp;Xiangqian Jiang ,&nbsp;Jiandong Hao ,&nbsp;Jinchang Meng ,&nbsp;Tingwei Yan ,&nbsp;Chuncheng Ban","doi":"10.1016/j.nxnano.2024.100047","DOIUrl":null,"url":null,"abstract":"<div><p>As a member of the hexagonal boron nitride (h-BN) system, boron nitride nanoribbons (BNNRs) have a BN polar covalent bonding infrastructure, and there are small-scale effects with strong correlation with piezoelectric effects as well as edge-strengthening quantum effects. However, realizing the polarization effect on BNNRs through experiments remains challenging. Here, we verify the strain-induced polarization effect on BNNRs through computational simulations and experiments. Using the ten-point iterative method, a computational model that can be used for the discrete difference of the polarization charge density and energy density of BNNRs is developed, and the correctness of the model for the polarization effect of Gaussian strain-induced BNNRs is verified by the computational programming in Python language. The polarization effects of strain-induced zigzag-edge BNNRs (ZBNNRs) for sawtooth strain, parabolic strain and oblique sawtooth strain are also investigated separately. In addition, the results of the computational simulations are experimentally verified to be consistent with the theoretical calculations. And the piezoelectric constant of − 276.88 pm∙V<sup>−1</sup> for strained ZBNNRs is found to be four times higher than that of unstrained ZBNNRs. This study provides a relevant reference for the study of realizing the high integration of nano-scale h-BN based piezoelectricity for piezoelectricity.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000081/pdfft?md5=51217f0dcccb0be1b335a6310d846139&pid=1-s2.0-S2949829524000081-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a member of the hexagonal boron nitride (h-BN) system, boron nitride nanoribbons (BNNRs) have a BN polar covalent bonding infrastructure, and there are small-scale effects with strong correlation with piezoelectric effects as well as edge-strengthening quantum effects. However, realizing the polarization effect on BNNRs through experiments remains challenging. Here, we verify the strain-induced polarization effect on BNNRs through computational simulations and experiments. Using the ten-point iterative method, a computational model that can be used for the discrete difference of the polarization charge density and energy density of BNNRs is developed, and the correctness of the model for the polarization effect of Gaussian strain-induced BNNRs is verified by the computational programming in Python language. The polarization effects of strain-induced zigzag-edge BNNRs (ZBNNRs) for sawtooth strain, parabolic strain and oblique sawtooth strain are also investigated separately. In addition, the results of the computational simulations are experimentally verified to be consistent with the theoretical calculations. And the piezoelectric constant of − 276.88 pm∙V−1 for strained ZBNNRs is found to be four times higher than that of unstrained ZBNNRs. This study provides a relevant reference for the study of realizing the high integration of nano-scale h-BN based piezoelectricity for piezoelectricity.

六方氮化硼纳米带应变诱导的极化效应
作为六方氮化硼(h-BN)体系的一员,氮化硼纳米带(BNNR)具有氮化硼极性共价键基础结构,并且存在与压电效应和边缘强化量子效应密切相关的小尺度效应。然而,通过实验实现 BNNR 的极化效应仍然具有挑战性。在此,我们通过计算模拟和实验验证了 BNNR 上的应变诱导极化效应。利用十点迭代法,建立了一个可用于 BNNR 极化电荷密度和能量密度离散差的计算模型,并通过 Python 语言的计算编程验证了该模型对高斯应变诱导 BNNR 极化效应的正确性。此外,还分别研究了锯齿应变、抛物线应变和斜锯齿应变的应变诱导之字边 BNNR(ZBNNR)的极化效应。此外,实验验证了计算模拟结果与理论计算结果的一致性。结果发现,应变 ZBNNRs 的压电常数为 - 276.88 pm∙V-1 ,是未应变 ZBNNRs 的四倍。该研究为实现基于纳米尺度 h-BN 的压电器件的高集成度压电研究提供了相关参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信